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Abstract

In this paper, we explore connections between the Lipari-Szabo formalism and reduced spectral density mapping,
and show how spectral density estimates can be associated with Lipari-Szabo parameters via a simple geomet-
ric construction which we call Lipari-Szabo mapping. This relationship can be used to estimate Lipari-Szabo
parameters from spectral density estimates without the need for nonlinear optimization, and to perform ‘model
selection’ in a graphical manner. The Lipari-Szabo map also provides insight into the Lipari—-Szabo model, and
allows us to determine when a given set of experimental spectral densities are inconsistent with the Lipari-Szabo
formalism. Practical applications of Lipari—-Szabo mapping in conjunction with more traditional analysis methods
are discussed.

AbbreviationsCspA, cold-shock protein A; CSA, chemical shift anisotropy.

Introduction relaxation mechanisms is well known (Cavanagh et al.,
1996; Fischer et al., 1998). For example, in an isolated
Dynamics play a significant role in the biologi- heteronuclear spin paitil and*°N for the purposes
cal functions of proteins and other macromolecules of this paper) subject only to dipole-dipole and chemi-
(McCammon and Harvey, 1987; Brooks et al., 1988; cal shift anisotropy (CSA) relaxation mechanisms, the
Jardetzky, 1996), and NMR relaxation is a powerful longitudinal relaxation rat&R;, the transverse relax-
tool for the study of molecular motion in these mole- ation rateR,, and the heteronuclear cross-relaxation
cules (Levy and Keepers, 1986; Palmer, 1997; Fischer rate R, (obtained experimentally from the steady-state
et al., 1998). As molecular motions are stochastic heteronuclear NOE) of th®N spin are given by lin-
processes, they can be described in terms of a timeear combinations 0(w) evaluated atv = 0, wn,
correlation functiorC(t). Observable NMR relaxation  ®wy — wn, wH, andwy + wn. Thus, a description of
rates can then be expressed as function€(®f or the motions experienced by a heteronuclear spin pair
more conveniently, the spectral density functijm), in the form of the time-correlation or spectral density
which is simply the Fourier transform dZ(t) and function provides sufficient information to predict the
describes the frequency content of the motion experi- heteronuclear relaxation rates. However, the inverse
enced by a given spin or spin pair (Fischer et al., 1998). problem of learning about the motions from knowl-
The dependence of relaxation rates)¢m) for various edge of the relaxation rates is much more difficult.
P—— § hould be add et D First of all, it is not possible to define the shape of
o e S e o e ey 3 functon (e the spectral density) based on a f-
Taylor Road, Piscataway, NJ 08854-8087, U.S.A. E-mail: an- Nité number of experimental measurements, unless we
drec@Ilutece.rutgers.edu assume some model for the function which contains



84

a finite number of adjustable parameters less than or Mayo, 1997). As mentioned above, there is usually
equal to the number of measurements. Furthermore,not enough information in the rather limited number
even a fully determined spectral density function may of noise-corrupted relaxation data typically measured
not contain sufficient information to establish the na- to unambiguously reject all but one possible physical
ture of the physical motion, since very different mo- model. This difficulty prompted Lipari and Szabo to
tional processes can lead to indistinguishable spectraldevelop a functional form fod(w) which contains a
densities (Lipari and Szabo, 1982). minimal number of adjustable parameters and which
Since only a finite number of points on tléw) does not depend on the assumption of a precise phys-
curve contribute to the experimentally observable re- ical model for its validity (Lipari and Szabo, 1982).
laxation, one could avoid the use of any model by This formalism, known as the ‘model-free’ approach,
estimating only those values dfw) which contribute has proved to be extremely popular for the analysis
to the experimental data, rather than trying to estimate of NMR relaxation data (Palmer, 1997; Fischer et al.,
the entire functional form a¥(w). These valueswould  1998).
then constitute a quantitative model-independent de-  In this paper, we explore the relationship between
scription of the spectral density funtion resulting from the Lipari—-Szabo formalism and reduced spectral den-
the motion experienced by an internuclear vector, in- sity mapping. Based on this relationship, we show
cluding the overall tumbling of the molecule and any how the spectral density estimates can be associated
internal motions that may be present. This strategy, with Lipari—-Szabo parameters via a simple geometric
known as spectral density mapping, was first pro- construction, which we call Lipari-Szabo mapping.
posed by Peng and Wagner (Peng and Wagner, 1992b)This graphical procedure compares the location of ex-
Their original approach, however, was made cumber- perimentally estimated spectral densities relative to a
some by the fact that the three commonly measured parametric curve representing the spectral densities for
relaxation rates K1, Rz, and R,) are insufficient to a single Lorentzian. We show how the Lipari-Szabo
uniquely determine the five spectral density values mapping can be used to perform ‘model selection’
(J(0), J(wN), JwH), andI(wy *+ wn)), and experi- (the decision whether contributions from conforma-
ments to measure other relaxation rates, such as thosdional exchange or multiple timescale motions must
of two spin order and antiphase coherences, had to bebe invoked to fit the data for a given residue), and
devised. More recently, the spectral density mapping determine when a given set of experimental spectral
approach has since been reformulated assuming thatdensities are inconsistent with the Lipari-Szabo for-
J(wH—wn) ~ J(wR) ~ J(wH+oN), of thatd(w) o w2 malism. Previously, we proposed a graphical approach
for largew, thereby reducing the number of unknowns for visualizing the uncertainty of the Lipari-Szabo
from five to three (the so-called ‘reduced spectral den- parameters based on a direct propagation of the experi-
sity mapping’ method) (Farrow et al., 1995; Ishima mental uncertainties (Jin et al., 1997, 1998). However,
and Nagayama, 1995). Sin®e, R2, andR, are linear that method was limited to the case where there was
functions ofJ(w), one can obtain thé(w) values by no conformational exchange or multiple timescale mo-
solving a system of linear algebraic equations, mak- tions. The Lipari-Szabo mapping method addresses
ing the analysis mathematically very straightforward this deficiency. It is our belief that the detailed quan-
(Fischer et al., 1998). Unfortunately, the resulting titative study of macromolecular dynamics via NMR
J(w) values cannot be easily visualized in terms of a relaxation requires more than three relaxation data per
physical description of the motion, especially since residue as well as more powerful, statistically rigor-
they represent a superposition of information about the ous analysis methods (Andrec et al., 1999, 2000).
internal and overall motional degrees of freedom. Lipari—-Szabo mapping is intended as a means of bet-
In order to obtain a physical description of the ter understanding the information content of the three
internal motion, most analyses of NMR relaxation commonly measured NMR relaxation dat;( Ro,
data assume some functional form fifw), the ad- and NOE at one field strength), as a method for
justable parameters of which have an intuitive physical quickly evaluating whether or not such relaxation data
meaning. One can imagine many physically reason- for a particular residue can be fit using the Lipari—
able models for the motion experienced by a particular Szabo formalism at a given overall tumbling correla-
internuclear vector (such as n-site jump or diffusion tiontime, and as a supplement to existing software for
in a cone), and expressions f@(t) have been de- the analysis of these data.
rived for a number of such models (Daragan and



Theory and methods

In the Lipari—-Szabo model-free formalism, the spec-
tral density function for the motion of a given bond
vector is given by

2 |: $24,,

T =5 15022
wheres? is a measure of the spatial restriction of the
internal motion,t, is a measure of the timescale of
the internal motion,t,, is the rotational correlation
time for the overall isotropic tumbling, and!
1,1 + 1, (Lipari and Szabo, 1982). If the internal
motion is very rapid (i.e. in the ‘extreme narrow-
ing limit’), then t, approaches zero, whereas if there
is no internal motion, thers? is unity. It has been
found that not all proteif®N NMR relaxation data
can be fit well to a spectral density of the form of
Equation 1. In particular, it is sometimes necessary to
account for chemical exchange effects by adding an
exchange contributioReyx = wﬁ, dey to the predicted
R2, wherewy is the Larmor frequency of°N and
dey is a constant that depends on the chemical shift

(1— 5%t
1+ w??

1)

differences, populations, and interconversion rates for
the exchanging species (Fischer et al., 1998). Further-

more, it is sometimes necessary to invoke motion on
two widely separated time scales to adequately fit the
data, resulting in the so-called ‘extended model-free
approach’ of Clore et al. (1990):

[ 521, (1- 521

1+ w22 14 w??
where 2 is the order parameter for the slow mo-
tion, S2 is the order parameter for the fast motion,
and t, is the effective correlation time for the slow
motion (the fast motion is assumed here to be in the
extreme narrowing limit). It is possible, however, that

2
J(w) ==

2
5 Sf

(2)

some experimental data cannot be fit even using these

extensions.
We will assume that three experimental relaxation
measurements at a single field streng®,(R2, and

heteronuclear steady-state NOE) are available, andis
that their uncertainties are described by uncorrelated Strength of 500 MHz,n

normal probability densities with meang, w2, N,
and standard deviationsg, o2, on, respectively. Since
the spectral density values are linearly relatedk{o
R>, and the cross-relaxation rafg, it is first nec-
essary to estimat®, from the experimentaR; and
NOE measurements using the relation

R: = (yn/YH)(NOE— DRy, (3
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whereyyn andyy are the gyromagnetic ratios 6tN
and!H, respectively (Fischer et al., 1998). The uncer-
tainty in R, is then given by the probability density
of the product of the two normally distributed random
variablesx andy, wherex (YN/YH)(NOE — 1)
has meanyn/vyH) (kN — 1) and standard deviation
lyn/vHl on andy = R1 has meanw; and standard
deviationos. Although the probability density @&y in
general cannot be written in closed form (Craig, 1936),
it can be well-approximated by a normal density with
mean

x = (YN/YH) (N — Dpra, (4)
and standard deviation
ox = y—: \/ 22+ o2(un — 1)2 (5)

determined using traditional ‘propagation of errors’
(Bevington, 1969) ifP(x) andP(y) do not have appre-
ciable density at = 0 ory = 0. In that limit, we also
find that there is minimal correlation betwe&n and

.
In the reduced spectral density mapping method,
the relationship between the relaxation ra®s Rz,
and R, and the spectral density is given by the linear
system

Aj =d, (6)

wherej = (J(0) J(wn) I(0.87wr))”, d = (R1 R2
R.)T,

0O b Ta
A= %b %b %’a (7)
0 0 &
By | (on A0)?
_ w i b=3a+u’ (8)
167%ryy 3

io is the permeability of free spach,is the Planck
constantyny is the mean N—H bond length, ands
the magnitude of the CSA fdPN. For a'H field
1.02 A, andAc
—160 ppm, we obtaia ~ 1.2985 anth ~ 4.762 for

j in units of ns/rad and in units of Hz. For notational
convenience, we will represent the three spectral den-
sity values in Equation 6 a& = J(0), /N = J(wn),
andJy = J(0.87wy). The estimation of the value and
uncertainty of given the value and uncertainty dfs

a linear problem, and its solution is particularly sim-
ple, especially if viewed from a Bayesian perspective
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0.08

(Sivia, 1996), where we can summarize the informa-
tion about the spectral density values in the form of a
posterior probability density function. In the case of a
uniform prior density ovej the posterior probability 008y
density ofj is given by a multivariate normal density
with mean g
1 £ oos
n;=(ATE*A) TATx © =
and covariance matrix ,
L 1 0.02 +
s = (AT2; A) , (10)
where 0
2 Q 0.2 0.4 0.6
o 0 O Jy (nsfrad)
Yg=1| 0 0% 0 (11) 0.08
0 0 o2 b)

is the covariance matrix describing the uncertainty in P2 fx=200ps)
the relaxation data (O Ruanaidh and Fitzgerald, 1996).
Thus, the uncertainty incan be estimated directly via
Equation 10 without the need for Monte Carlo error
estimation methods.

In keeping with the semi-quantitative spirit of this
paper, we will approximate the uncertaintyjitby a

box with sides parallel to théy, /N, andJy axes cen-

0.06 -

tered atp; and having widths equal to(2 j)ill./ 2 (1.5 /_/,,\ P
standard deviations about the mean). We will further . s fim=451e) |
assume that all values inside this box are feasible 0 02 04 06

) o> . Jy (nsfrad
(i.e. have equal and finite posterior probabilities), and  (nsfrad)

those outside are not (i.e., have posterior probability Figure 1. (a) The parametric curves{'¥® ), /9% () cor-
zero). Since the diagonal elementssdf represent the responding to all possibleJ, Jy) points consistent with rigid

variances of the marainal densities of each element of isotropic tumbling (Equation 12). The circles are labeled with the
9 values oft corresponding to that point on the curve. The curve con-

j, this box represents a conservative estimate of the tinues to approach the origin aapproaches infinity. (b) The shaded
uncertainty inj. Of course, one could more rigorously region indicates the/fy, Ji) points consistent with internal motions
represent the uncertainty as a smooth function or as described by Equation 1 or 2 for an overall tumbling correlation time

li idal fid b ds: h beli of 4.5 ns. PointP; represents theJfy, Jy) point for Equation 1
ellipsoiaal conn ence. ounas; Oweve.r’ W? elieve i tn = 45 ns ands? = 1. Point P, represents theJfy, JH)
that a box representation of the uncertainty is not un- point for Equation 1 withe = 200 ps ands2 = 0. The line segment
realistic and more appropriate for the purposes of this connectingP; and P, represents the/fy, Ji) points cgnsistent with
paper. In general, the neglect of statistical correlations Eauation 1 witht,, = 4.5ns,« = 200 ps and O< §° < 1. Point

. . . P3 represents theJy, Jy) point for Equation 1 witht,, = 4.5 ns,

among the _sp_ectr_al densities will tend to overestimate ;_ 200 ps ands? = 0.8. Point P4 represents the/f, J) point
the uncertainties in our analyses. If accurate quantita- corresponding to the smallest possibjg consistent with poiniPs
tive uncertainty estimates are required, we recommend (for which <, and would be zero).
the use of more rigorous statistical parameter estima-
tion methods (Andrec et al., 1999, 2000). It should be
noted, however, that all of the theoretical relationships
between Lipari-Szabo parameters and spectral den
sity values derived below are rigorous. On the other
hand, the derivation of spectral density values from ex-
perimental relaxation data and their uncertainties are
correct only to within the approximation of reduced
spectral density mapping, and the estimates of uncer-
tainties in the Lipari-Szabo parameters and ‘model

selections’ based on those estimates are valid only to
within the box-function approximation of the uncer-
“tainty inj. For demonstration purposes, we will make
use of 15N relaxation data for the major cold-shock
protein from Escherichia coli(CspA) (Table 1), for
which a standard analysis performed using the MOD-
ELFREE software package (Mandel et al., 1995) has
been published (Feng et al., 1998).
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Table 1.Relaxation data, spectral density estimates, and MODELFREE parameter estimates for the
selected residues of CspA shown in Figures 3 and 7

Residue  Relaxation Spectral MODELFREE parameter estifhates

number  data density
(R1, Ra, estimates 52 e Rex SJ%
NOEf (o, In, J)° (or s3)° (ps) (s

29 2.16£0.08 1.72 £0.03
6.57+0.08 0.44 +0.02 0.77+ 0.03 0 0.7+024 1
0.72+0.07  0.009+ 0.002

36 2.68£0.12 1.79 £0.05
7.08+£0.14 0.54 +0.03 0.92+0.02 105+-¢ 0O 1
0.70+£0.09 0.012+ 0.004

41 2.21+£0.07 1.06 £0.02
457+0.06 0.42 £0.02 0.69+£0.02 232+56 O 0.86+ 0.02
0.294+0.04 0.025+ 0.002

42 2.07£0.10 1.44 £0.04
5.68+0.10 0.39 +0.02 0.71+£0.01 142+38 O 1
0.35+0.07 0.021+ 0.002

46 1.93+ 0.10 2.29 £0.06
8.33+0.17 0.36 +0.02 0.58+ 0.02 288+ 89 358+022 1
0.13+0.05 0.026+ 0.002

57 2.37£0.22 1.42 £0.06
5.75+0.16 0.46 +0.05 0.744+ 0.02 93+ 45 0 1
0.52+0.09 0.018+ 0.004

69 2.27£0.15 1.56 £0.05
6.12+0.13 0.46 +0.03 0.80+ 0.02 0 0 1
0.70+£0.09 0.01140.003

aRelaxation rates (inst) and steady state NOE values and their uncertaintied 6tandard deviation)

measured by Feng et al. (1998).

bSpectral density values (in ns/rad) and their uncertaintie$ $tandard deviation) estimated using Equa-

tions 4-11.

CLipari-Szabo parameter estimates reported by Feng et al. (1998) usjngstimate of 4.88 ns.
dReported value i$2 (Equation 1) ifSJZf = 1, otherwise the reported value i§ @quation 2).

eError estimate could not be determined reliably from previous statistical analysis (Feng et al., 1998).

Results

Relationship between reduced spectral density
mapping and the simple Lipari—-Szabo model

In order to investigate the relationship between Equa-
tion 1 and the results of reduced spectral density
mapping, let us first consider the family of possible
(IN, Jn) values for rigid isotropic tumbling (i.e., the
single Lorentzian of Equation 1 wif[ﬁz = 1). This

is given by the parametric curvg{"9®(t), 79 1))
for0 <t < oo (Figure 1a), where

igi 2 1t
Ji(l’lgld)(t) _

- 12
51+wl.2t2 (12)

As can be seen in Figure 1a, this curve is approx-
imately triangle-shaped, with the three sides corre-
sponding to the regimes afr <« 1, wt 1, and

ot > 1. Thus, if experimentalfy, J4) spectral
density values coincide with this curve to within ex-
perimental error, then the data are consistent with rigid
tumbling for some value of,,,. It is much more likely,
however, that the experimental\(, /4) values do not
coincide with this curve due to the effects of internal
motion. Let us next consider the family of\, Ju)
values consistent with Equation 1 for a given value of
T andt (v = ¢t + 1), and all possible values
of §2. Substituting into Equation 1, we find that this is

=
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given by the parametric curve
IN = 52 <J'£Irigid)(rm) _ Jlilrigid)(r)>
+J,£|ngld)(r)
0<S2<1.
I = 52 Jlgrlgld)(_tm) . Jlgl'lgld)(_t))
+J|£|r|g|d)(r)

Equating the two parts of Equation 13 after solving for
52, we find that the curve of Equation 13 is equivalent
to

(13)

Ju — Jlgrigid)(_c)
Jlgrigid)(_cm) _ Jlgrigid)(_c) =
IN — J’Elrigid)(_c)
J,Elngld)(_cm) _ J'&Ingld)(_t) ’

which is simply the equation for the straight line
in the (N, Ju) plane passing through the points
P = (I ), 10 () and Py = (10 (v),
759 (1)), as shown in Figure 1b. Comparison with
Equation 1 shows that poinfy and P, simply repre-
sent the contributions from the, /(1 + wzr,zn)- and
1/(1 + w?t?)-containing terms of the Lipari-Szabo
spectral density, respectively. /2 varies from 1 to
0, the spectral densities move along this line frém
to P, and the ratio of the distance between a given
point on the line andP; to the distance betweePy
and P, is equal to the value of2. Changes in the
internal correlation time, result in the movement of
point P, along the ‘rigid tumbling’ curve from the
origin (fort, = t = 0) to P1 (x. — o0). Further-
more, it is apparent that the set of all possihlg,(
Jn) values consistent with Equation 1 for an indepen-
dently determined value of,, consists of the region
below the ‘rigid tumbling’ curve and above the line
passing throughP; and the origin (corresponding to
1. = 0) and is indicated by the gray region in Fig-
ure 1b. It is also apparent that for very largevalues
(such thatt approaches,,) the P;-P, distance be-
comes quite short, and large changesstresult in
correspondingly smaller changesJg andJy. Thus,
uncertainties ins? are much larger when, is large
for equivalentJy and Jy uncertainties, as has been

(14)

demonstrated previously using other methods (for ex-

ample, Jin et al., 1998). The linear relationship of
Equation 14 is clearly not specific toy andwy, but

is true for spectral densities evaluated at any pair of

frequencies when Equation 1 is valid (wiitzx = 0),

as has been noted previously (Lefevre et al., 1996;
Guenneugues et al., 1999). Furthermore, such a lin-

ear relationship also exists for the relaxation rates

R2, and R,, as has been pointed out previously by
Fushman et al. (1994). In principle, one could recast
all of the results in this paper in terms of correla-
tions between the observed relaxation rates and those
predicted by rigid tumbling, however the resulting
equations would be considerably more cumbersome
(cf. Appendix).

In the above construction, it was assumed that
an independent estimate af, is available. How-
ever, knowledge of an experimentaly( Jy) point
allows us to establish a lower bound ap that is
independent of any such estimate. This minimyn
corresponds to the value bt which the ‘rigid tum-
bling’ curve ("9(z), 79 (1)) intersects the line
passing through the givedy, /) point and the origin
(i.e.,t. = 0) (point P4 in Figure 1), and corresponds
to the case of a single Lorentzian in Equation 1. Its
value is given by

L(min) _ IN — JH _
m T — InoZ

In most cases, this bound will be of little practical
use, as it will almost always be less than3 ns (the

t value corresponding to the second ‘corner’ in the
curve of Figure 1a). However, it will be seen below
that<""™ is also numerically equal to the maximum
possible value ot consistent with aJfy, Ju) point if

we aIIowS? # 1, and this will play an important role

in understanding the feasible ranges of the extended
Lipari—-Szabo parameters.

The above geometric construction relating Lipari—
Szabo parameters to a point in thé( Jy) plane
also allows us to calculate the values $# and t,
in Equation 1 consistent with a givedy, Jy) point
and a given value of,,, without the need for nonlinear
optimization or any other iterative numerical method.
Consider a pointPops = P3 = (J°P%, 7°P%) in
the gray region in Figure 1b. To find what values of
$2 andt are consistent withPops at the given value
of t,,, we first construct the line througByps and

Py = (J{199(x,), 1599 ), which is given by
JH=cINn+d, (16)

(15)

where
J9D () — g oP9
and
d = 159 (1,) — a9 (z,,).




The value oft corresponds to the point at which the
line of Equation 16 intersects the ‘rigid tumbling’
curve, i.e., it is a root of the equation
CJlilrigid)(_E) +d= Jérigid)(_c)'
Expanding and collecting terms, we find that
(%’c‘lcicn,z_'(oﬁ)t‘1 + (wa — wﬁ,c‘l)t3 (17)
+(%c’ldwawﬁ)t2 +A-cYHe+ %’c’ld =0,
which is a quartic equation in. However, we know
(by construction) that one of the roots of this equa-
tion must bet = t,,. Dividing the left-hand side of
Equation 17 by <€ — t,,), we obtain finally the cubic
equation

P+ AP+ Bt+C =0, (18)
where
A 5(],510b9wﬁ,k|\| — J,gObswakH) + ZIm(wa — wﬁ‘)
50203 Tm (S 2%y — 1P ky)
B— 5(],30b9wﬁk|-| — J,&,Obswakl\l) + ZIm(wa — wﬁ)
5w wd (S %y — k) ’
C = _71
w{o T
and
ki = 1+ w?t?,.

A numerical solution for the real root(s) of Equa-
tion 18 can be obtained using a closed-form, non-
iterative method (Press et al., 1992). Ondeas been
found, we can locaté®, = (J,i,”g'd)(r), J,ﬂ”g'd)(t)), as
well as convert into T, using the relation

TnT

T = . (19)
Tn— 1T
The value of$2 can then be calculated from
Pobs, P
SZ _ d(Pops, P2) (20)

d(P1, P2)
whered( ) is the Euclidean distance between two
points in the (N, Ju) plane. Since the presence of
chemical exchange contributes onlyAg(see below),
the solution outlined above remains valid whether or
not Rex = 0. Therefore, it is possible to determine
the values of§2 and<, in a direct, noniterative man-
ner without the need to explicitly estimafyx. As
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would be immune to any inaccuracies arising from
the reduced spectral density mapping approximation.
However, such a strategy results in a sixth-order
polynomial which cannot be solved in a noniterative
manner (see Appendix).

Mapping of § information onto the [y, Ju) plane
and ‘model selection’

Thus far, we have only made use of the valuedpf
andJy. In this section, we show below how to incor-
porateJg information into the/y vs Jy plot described
above to create the full ‘Lipari-Szabo map’. It will
be seen below that this is critical, since the detection
of deviations from simple Lipari-Szabo behavior re-
quires the simultaneous analysis &, Jn, and Jy
information. For the moment, however, let us assume
that Equation 1 (withRex = 0) is valid for a given
residue and thafp is known precisely. Given values
for Jo, T, andrt,,, we can solve Equation 1 for:
gfo -1

52 = (21)

Ty — T
Equation 21 specifies a curve (an ‘igg-contour’)
through (2, t) space as a function af0 < t < gjo)
which gives a constant value d§ when substituted
into Equation 1 with a given,,. One can readily con-
vert Equation 21 into an equivalent isg-dontour in
the (/n, Ju) plane, as shown in Figure 2. As can be
seen there, the is@y contours move closer to the point
P = (J,f,”g'd)(tm), J,S”g'd)(tm)) as Jo increases, and
vice versa. We can determine the consistency of the
data with Equation 1 simply by plotting the experi-
mentalJ/y andJy spectral densities together with the
iso-Jo contour for the experimentd} spectral density.
If the experimental {n, Ju) point coincides with the
iso-Jo contour to within experimental error, then the
data can be fit with Equation 1 to within experimen-
tal error. Otherwise, the data are not consistent with
Equation 1, and additional adjustable parameters must
be used to adequately fit the data. Of course, since
the representation of the uncertainties in the spectral
densities as a box is only approximate, this method
cannot be used as a statistically rigorous hypothesis
test. However, it can still be usefully employed as
an addition to existing analysis software to identify
possible model-selection ambiguities independently of
more formal statistical tests, as will be seen below,
especially since this approach is so well suited to

mentioned above, one could make use of the linear graphical representation.

relationship betweem®; and R, to construct a poly-
nomial in T analogous to Equation 18 above which

As an example of the Lipari-Szabo mapping
approach to ‘model selection’, we have generated
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Figure 2. The ‘rigid tumbling’ curve (solid line), poinP; = (J,f,”gid)(rm), J

Jy (ns/rad)

(rigid)
H

0.08 T T i
0.08 i
k=)
g
‘3 0.04 | R
S
_)I
0.02 b
| T (tm = 4.5 ns)
e
0 I L 1
0.2 0.4 0.6

(tm)) for T, = 4.5 ns (filled circle), and thet, = 0 line’

for 1, = 4.5 ns (dot-dashed line), together with the ‘igg-contours’ (Equation 21) fo¥g = 0.3, 0.9, 1.5, and 1.8 ns/rad (dashed lines).
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Figure 3. Lipari-Szabo maps for selected residues of Eheoli major cold-shock protein CspA (Feng et al., 1998). The finalestimate
obtained by Feng et al. (4.88 ns) is used throughout. The dotted lines correspond to fhedsteurs forJg £ 1.5, and the rectangles
represent/y + 1.5 and Jy + 1.5 as estimated using Equations 9-10. The dot-dashed lines correspond to upper or lower bounds on
determined by the spectral density estimates.
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Lipari—-Szabo maps for several residues of CspA (Feng Detection and estimation ofsRcontributions

et al., 1998), assuming, = 4.88 ns and isotropic ) ) _

tumbling (Figure 3). The spectral densities and their Residue 29 (Figure 3c) is an example where the spec-
uncertainties were estimated using Equations 9 and {ral densities are not consistent with Equation 1. In
10 as described above. The Lipari-Szabo map for particular, theJy and Jy spectral densities are simi-

residue 69 (Figure 3a) demonstrates that Zheand lar tq those Qf residue 69 (Figure 3a) in .that they are
rectangle representing the uncertaintiesinand Jy clearly larger than would be expected based on the ob-

served/y andJy if Equation 1 were valid. This can be
seen in Figure 3c by noting that the igg-contours do
notoverlap the(y, Ju) feasible region, but are shifted
closer to the poinP; = (J,f,”g'd)(tm), J,S”g'd)(rm)). As

has been noted previously (Peng and Wagner, 1995),
the presence of aRey contribution to the transverse
relaxation rate will result in an inflated value while
leaving the other spectral densities unchanged, since
Jo contributes only tR, (Equations 6—7). The magni-
tude of Rex can therefore be estimated by calculating
the apparent/p value that would result in an isdy
contour that passes through the observéd, (Ju)
point (Jéap@). The value ofRey is then related to the
‘excess’Jp and is given by

overlaps the line passing through = (/9% (x,,),

749 (7)) and the origin. Furthermore, thé and

Ju estimates are consistent with Equation 1, since the
iso-Jp contours corresponding to the minimum and
maximumJg values overlap theJfy, Jy) uncertainty
box. This result agrees with the MODELFREE model
selection result (Table 1). It is clear from Figure 3a,
however, that values as large as 90 ps are still con-
sistent with the spectral density estimates, since such
© values will still give rise toP;- P> lines which inter-
sect both the Jy, Ju) uncertainty box and the region
between the upper and lower bound igpeontours.

If we assume that, = 0, then the feasible range
of 52 is determined completely by the feasible range
of Jo, since both the maximum and minimum igg- Rex = 2b(J{° — J*P), (22)

contours lie inside the/ky, Jiy) box fort, = 0. USINg \yhere the constarth is the same as in Equation 8
the feasible range defined By1.50, i.e., 1.49< Jo < (Fushman et al., 1994; Peng and Wagner, 1995). For
1.64 ns/rad, we find from Equation 1 a feasible range .iq,e 29, the feasible range 6% is determined

2 .
for the order parameter of 0.76 $° < 0.84, which ., hjetely by the uncertainty i if we assume that
is in excellent agreement with the 1.5 bounds of t, = 0, and is given by 0.7 2 < 0.82, which

2 . .
0.77 = §° < 0.83 determined using MODELFREE 551065 very well with the: 1.5 range estimated us-

(Table 1). _ _ ing MODELFREE (0.73< 2 < 0.82). The range of
The Jny and Jy spectral density estimates for ;(@pp

residue 57 (Figure 3b), on the other hand, are clearly >9 values cpns_|ste_nt with th'.s range Sﬁ. can be
. . . found by substituting into Equation 1, and is given by
not consistent witht, = 0, since the rectangle rep-

resenting the uncertainties iy and Jy does not ~ 1-41= Jo™ < 1.60 ns/rad. Taken together with the
overlap the line passing through = (J’Elrigid)(_cm) upper gnd lower bounds onthe obser\I_@ah Table_l,
(rigid) o . e we estimate the feasible range #®gx using Equation
Jy° " (tm)) and the origin. The isdg contours indi- 22 t0 be 0.25< Rex < 1.14 5T (compared to 0.35
cate that the spectral densities are still consistent with g — 1 07 s1 MODELFREE estimate). It is appar-
Equation 1; however, their curvature results in two dis-  ant from this analysis that values 6% andt can be
tinct regions of §2, t) space consistent with the data: estimated from the observedy(, Ju) values without
one with 40< © < 190 ps and the other with 390 BS  he need to estimate the value Bf. This does not
1 < 1.4 ns. Only the former region was reported in the imply, however, thats?2 andt are uncorrelated with
MODELFREE analysis (Table 1). The presence of two Rex, Since points within the feasible/y, Ji) region
disjoint feasible §2, 1) regions is confirmed using our further away frompP; = (J(rigid)(_[ ) J(rigid)(_c )
previously described graphical analysis method (Jin . correspond to smallgr valugs’SﬁHwill re:ult
et al., 1997) (Figure 4); however, the estimated ranges in larger estimates Rex.
of © Qiﬁer slight!y. T_his may be a re;ult of the_ pox- The situation is even more dramatic for residue
functlon approximation to the.posterlor pro_bablllty of 46 (Figure 3d), where the observegivalue is larger
j used in the present_anaIyS|s_ or of a faylure_ of the than the maximum possible value foj, = 4.88 ns
reduced spectral density mapping approximation. (equal to% 4, = 1.95 ns/rad). In this case, the iso-

Jo contours are undefined and therefore they do not



92

08 H

T

0.6 ol N -
ol N N
s ” o
i)
0.4 J
’
5 .
02 & . i
i N
I \\
0 ! ! ! 1 ™
0 0.5 1 1.5 2 2.5 3
Te (NS)

Figure 4. Results of the Jin et al. graphical method of Lipari-Szabo error propagation (Jin et al., 1997, 1998) for residue 57 of CspA calculated
usingt,, = 4.88 ns. The curves correspond to contours of congtar{solid lines),R, (dotted lines), and NOE (dashed lines) for the observed
data+ 1.5 standard deviation. The region between each pair of curves corresponds to th&$etff{oints consistent with that datum. The

intersection of those sets (shown in gray) are those valus$ ehd, consistent with all of the data. The upper and lower bounds,are
given by 30< 1, < 190 ps and 0.% 1, < 2.1 ns for the two disjoint feasible regions (correspondingtanges of 30< t < 180 ps and 0.&

1 < 1.5 ns, respectively).

appear in Figure 3d at all. The bounds #§pand Jy
clearly precluder, = 0, and since in this case the
Jo estimate provides no information that would re-
strict the feasible range of andr,, the feasible (x,

Ju) range provides an immediate estimate of lower
and upper bounds ot, of 100 < t, < 190 ps (Fig-
ure 3d), compared to the MODELFREE estimate of
150 < 1, < 420 ps. Since the isdg contours form

play the same role as? in the above analysis, then
allowing 7 # 1 simply has the effect of moving a
point in (N, Jn)-space that is consistent with Equa-
tion 1 along a straight line toward the origin (since
Equations 1 and 2 differ only by the overall scal-
ing factorS%). Such a translation obviously cannot
move a (N, J4) point outside of the shaded region
of Figure 1b. Thus, all{y, J4) points consistent with

a monotonically increasing surface as we approach Equation 2 are also consistent with Equation 1 for dif-

P = (J,i,rigid)(rm), J,f,”gid)(rm)) (Figure 2), the max-

imum and minimum values of** consistent with
the (Un, JH) box must lie on the edge of the box. In

this case, they correspond to the lower right and upper

left corners of the v, J4) box and are given by 1.04
< J{®P < 1.28 nsirad. From this we can use Equa-
tion 22 to obtain a feasible range f®y of 2.92 <
Rex < 4.25s1, which is somewnhat larger than, though
generally consistent with, the MODELFREE result of
3.25< Rex <3.91st.

ferent values of the internal motional parameters, and
vice versa. Therefore, the determination that the ex-
tended Lipari-Szabo model is required to fit the data
to within experimental uncertainty can be done only
via a simultaneous analysis &f, Jn, andJy.

Knowledge ofJy and Jy alone, however, is suf-
ficient to determine upper and lower boundsttcas
well as a lower bound t62. Consider a point in the
interior of the feasible y, Ju) region (say, poiniPs
in Figure 5a). To be consistent with this poisg and
t© must be chosen such that the values

Detection and estimation of multiple timescale motion 7 2 521, 1- SSZ)'E-
N= ¢ 2.2 2.2
The ‘extended model-free approach’ of Clore et al. 5 | I+ opm, 1+ oyt
(1990), which was devised to fit more complex mo- and , A (23)
tions occurring on multiple timescales, contains an P _ 2| St (1-589)1
additional order parametes}, Equation 2) compared 75| 14+w22 1403t

to the simple Lipari-Szabo model. If we alloﬂﬁ to
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Figure 5. (a) A Lipari-Szabo mapping approach to finding the fam-
ily of (82, 1, SJ%) values consistent with a givery{, Jn) point
P3. As described in the text, one can set the valuer 66 any-
thing in the ranga (MM < ¢ < ¢(MaxX (P2<m'”) to Pz(max)) and still
find values ofs2 and S]% that will give spectral densities consistent

with point P3 when substituted into Equation 2. The intersection
(rigid) (rigid)

of the line passing througl?y, = (Jy (tm)s Ty (tm)) and
Py = (J,E,"g'd)(r), J,S,"g'd)(r)) for any feasible value of t with the

line passing througﬂ?z(ma)o and the origin (point4) can be used to

determine those values §f andS}%. In this case P, corresponds to

1n = 4.88 ns, andP3 corresponds to the observég andJy values

for residue 41 of CspA (0.42 and 0.025 ns/rad, respectively). (b) A
curve showing/g ast increases fromMN to (M2 (je. aspP,

moves frosz(mi”) to P2<maX)). (c) The corresponding values §f

and SJZC determined from poinP,. The dot-dashed lines in (b) and
(c) illustrate the determination of tlﬂf, S;, and t values consistent
with the observed value of, for residue 41 of CspA (1.06 ns/rad).
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lie on the line passing throughs and the origin, and
betweenPs and the ‘rigid tumbling’ curve (i.e., be-
tween pointsP3 and P\ in Figure 5a), since for
any such {{, J{;) point (e.g., pointP4 in Figure 5a)
one can find a value & (0 < 2 < 1) that will bring
this point into coincidence with the observed point
P3. Point P4 can lie on the line segment betweég
and P,™ only if the value ofx lies in the interval
betweent™" (corresponding tcSJ% = 1 and repre-

sented graphically by poine,™" determined from
Psand Py = (J39 (), 759 (x,,))) and ™m0
(corresponding t62 = 0 and represented graphically
by point P;™), wheret ™ is numerically equal to

thet™" of Equation 15. Furthermore, since the ‘rigid
tumbling’ curve establishes an upper bound/grand

J{;, this determines a lower bound Gﬁ, given by

IN JH

SZ(min) = —— = — .
f( ) Jlilr|g|d) (.[(max)) Jﬁflgld) (.[(max))

(24)

This lower bound corresponds to the single-
Lorentzian limit of S? 0 in Equation 2, and
it depends only on the relative positions 8§ and
Pz(max) and not on the values afy or t,,. Moving
P3 closer to the origin increases the magnitude of the
‘upper bound'Jy; andJ}, values relative to they and
Jy values of Pz, and reduces the lower bound SE,
approaching a limiting value of zero &5 approaches
the origin.

Thus, the set of all possible values §f, t, and

52 consistent with a given point in they, Ju) plane
(point P3 in Figure 5a) can be constructed by allowing
T to vary from its minimum to its maximum value (i.e.,
from points ;™™ to P{™) and finding the inter-
section of the line betweer ("9 (1), J,ﬂ”g'd)(rm))
and (J,f,”g'd)(r), J,f,”g'd)(r)) and the line betweer;
and P\ (e.g., pointPs). However, the value ofg
calculated from thosé?, <, and s2 and Equation 2
is not constant, as can be seen in Figure 3pis
at its maximum value for the minimum value of
and decreases monotonically asncreases ancfj%
decreases, reaching a minimum at the maximum value
of t. This lower bound on/p given by

I = 252 (minytm, (25)

-5
whereS?(min) is given by Equation 24. If the esti-

matedJp value is smaller thadémi”) for the observed
Jn and Jy values, then it can be concluded that the
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data are not consistent with the Lipari-Szabo spectral (x? = 0.25). Clearly, the nonlinear fitting procedure
density of the form of Equation 1 or Equation 2 for used previously did not succeed in finding the least-
any value oft,, (since Sf.(min) andtM® are both squares fit. Although the parameters estimated here
independent of,,). ‘ _ do fit the spectral densities exactly, they do not fit the
If the estimated/o value is larger tha™™ but ~ relaxation data exactly (i.ex® = 0.25 > 0). This
smaller than the value that would be expected based is likely due to the quantitative failure of the reduced
on Equation 1 and the observedy( Jy) point (to spectral density mapping approximation, and is partic-
within experimental error), then it can be concluded ularly apparentin the NOE datum, which is dominated
thatSf, # 1 is required to fit the data. One can solve by J(wn £ wn) and therefore is most susceptible to
fortheSSZ, 2, and values consistent with aig, Jx, such a failure._ However, th(_e dgviation betwegn the
Ji1) point and a given value of,, simply by finding parameter.s estimated from L|p§1r|—SzabQ mapping and
the value oft for which the curve of Figure 5b in- the exact fit parameters determined by direct nonlinear
tersects the observeth value. Although we cannot ~ OPtimization ¢ = 1.05 ns,S? = 0.51, ands? = 0.88)
construct a non-iterative method for the determination 1S duite small, and is likely to be negflglble_com-
of t along the lines of Equation 18, it can be readily pared to the uncertainties arising from experimental

estimated using a one-dimensional root-finding algo- Uncertainties in the relaxation rates. _

rithm (Press et al., 1992). Oncehas been found, Although the ‘model selection” methods used in

52 can be determined from poin#, P, and Py in software such as I.\/IODEL.FF.QEE (Mandel et al., 1995)

a'nalogy to Equation 20, ari} is the constant needed make use of classical statlst_lcal hypothesis tests which

to make P, coincident with P53 (Figures 5a and 5c).  cannot compare models with equal numbers of pa-

Error estimation is more difficult in this case, since @meters (Jin et al.,, 1998), in the particular case of

changes in/y or Jy will cause a shift in the curve of tezstmg between models witRex 7 0 and those with

Jo vs . However, since the dependence.Jgfon t St # 1 this limitation is not a severe shortcoming. The

is smooth and monotonic, numerical estimationtof ~ need for eithetRex # 0 or 52 # 1 is determined by

will be very efficient and robust. The valuesgfand  whether the observed, value is significantly larger

52 can be found in closed form, and a simple Monte or smaller than what would be expected based on the

Carlo procedure can be used to reliably estimate the observed/y and Ju values. It obviously cannot be

uncertainties in the motional parameters. both, and as long as, is known and remains constant
As an example of this in the context of real data, there can be no ambiguity between ‘model &2 (<,

consider the spectral density estimates for residue 41 Rex, S5 = 1) and ‘model 5’ 67, t, Rex = 0, 5%),

of CspA. The Lipari-Szabo map for this residue (Fig- unless the data are already well fit by ‘model 82(

ure 3e) indicates that the observggdvalue is smaller T, Rexy = 0, S% = 1) (in the nomenclature of Mandel

than what would be expected based on the observedet al., 1995). Of course, this does not logically pre-

JN and Jy, since the isa contours lie further away  clude the possibility thaRex # 0 and Sff # 1,in

from the pointPy = (1199 (1,), {9 (x,)) than  which case the parameter estimate is underdetermined

the feasible {n, Ju) region. From the intersection if only three relaxation data have been measured. We

of the Jp vs 1 curve of Figure 5b with the observed consider this case in the following section.

value Jo = 1.06 ns/rad we find that the spectral den-

sities for residue 41 can be fit exactly by Equation 2 Mapping of the §2, 1, Rex, S%) nullspace in an

with © = 1.03 ns, $? = 051, ands? = 0.89 at  underdetermined system -

the estimatec,, of 4.88 ns (givingt, = 1.31 ns).

This differs significantly from the MODELFREE es- Ifwg are willing to consider the possibilzitythatagiven
timates oft, = 232 ps,52 = 0.69, andSJ% — 0.86. residue could have botRex # 0 andS% # 1, then

Back-calculation of the relaxation rates using the exact the parameter estimate is obviously underdetermined
expressions (Fischer et al., 1998) using the MODEL- If Only R, Rp, and NOE measurements at one field
FREE parameters and those estimated here shows thaf'€ngth have been made. Ideally, this situation should
the latter are a better fit: the MODELFREE parameters 0€ addressed by the collection of more data to un-
give Ry = 1.93sL, R, = 480 s, and NOE= 0.21 ambiguously determine the parameter values, as we
(x2 = 34.7), while the parameters estimated here give have advocated (Andrec et al., 1999). However, if the
Ry = 221 st R, = 457 s!, and NOE= 0.27 collection of more data is impossible or impractical,

’ ' then it is still possible to determine bounds on the mo-
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tional parameters even for an underdetermined system.the ‘excessJp can be attributed to aRex contribution.
The extraction of useful information from underde- However, we know that there is a lower bound on the
termined models (also known as ‘ill-posed inverse apparent/p thatis independent of the observédand
problems’) is certainly not without precedentin NMR corresponds to the Iimifs2 = 0. This, in turn, implies
spectroscopy or the physical sciences in general. Suchan upper bound oRex, given by

models arise routinely in geophysics, for example, max _ 2 (min) 26
where unique solutions are often obtained by im- Rex™ = 3b(Jo—Jo ™). (26)
posing additional ‘regularization’ criteria (Tarantola, | the case of CspA residue 4RéTaX) is equal to
1987). One common regularization method familiarto 1 gg 1 Ag above, the effect of uncertainty on the
NMR spectroscopists is the ‘maximum entropy’ Cri- qtional parameters is difficult to express analyti-
terion, which has been used to select a unique high c4)ly put can easily be determined via simple Monte
digital resolution frequency-domain representation of ~a.5 and presented graphically as a ‘scatter plot’ of
lower digital resolution time-domain data (Stephen- nullspace curves, as shown in Figure 6. Thus, for the
son, 1988). However, for many ill-posed problems general underdetermined fit é‘f T, Rex, ands2 to
there exist physical constraints which can significantly Jo, Jn, and Jy, we can obtain nontrivial uppér and

limit the size of the possible solution space even in |5wer bounds on. a lower bound irs2 (and a nontriv-
the absence of any regularization criteria (for a recent . /

NMR-related example, see Losonczi and Prestegard,:frl1 tppirr%%t?%'fo?e (z:;?jZ\ar\]gg:rﬁ/eiaflltlgvvserzolgh d
1998). We demonstrate here that the Lipari-Szabo PP ex

model itself provides such constraints, and that these if the data zcannot be fit witlRex = 0), anq an upper
: : bound ons? (the lower bound always beingf = 0).
constraints can be used to determine upper and/or S . ) ) .
. These limits can be seen in the ‘scatter plot’ of Fig-
lower bounds on the motional parameters.

In our case, they, Jn, Ju) values define a one- ure 6 as the bounds enclosing the entire ‘bundle’ of

dimensional curve (known as the ‘nullspace’) through Curves.
the (52, 7, Rex, S7) parameter space which fit the data

exactly (assuminglp > Jémi”) and no experimental  Discussion
uncertainty). For linear problems, the nullspace is a

linear subspace of the parameter space, and a set of orThe mapping of spectral density estimates and the
thonormal basis vectors for the nullspace can be easily geometric relationship between those estimates and
determined USing Singular value decompOSition (PreSS the Lipari_SZabo parameters pro\/ides many useful in-
etal., 1992). For a nonlinear model (such as the one sjghts into both the information content of the spectral
considered here), the nullspace consists of a nonlin- density estimates as well as the Lipari-Szabo model.
ear subspace of the parameter space, and in generajn addition to providing approximate parameter es-
cannot be expressed in closed form. In our case, how-timates and ‘model selections’ as described above,
ever, we can make use of the Lipari-Szabo mapping |jpari-Szabo mapping can also be used to detect cases
procedure to numerica"y estimate and plOt the curve which m|ght give rise to patho|ogies in the parame-
corresponding to the nullspace for any set 4f, (/n, ter estimation or ambiguities in the ‘model selection’.
Jn) data (with Jo > J{™™). In fact, this curve is  This is illustrated with two examples from the CspA
simply a generalization of the curve already seen in data set in Figure 7. In general, the closer the feasible
Figure 5b. Suppose that for residue 41 of CspA we (5, ) region is to the point; = (]h(l”g'@(tm),
i 1 consider e posstty ok £ 0.5, g il e e gy

. . reaching the extreme case of infinite uncertaintif
densities for residue 41 are given blp{Jn, Ju) = is inside the feasibleJ{, Ju) region. Figure 7a shows
(1206’ 0.42, 0.025) with no experimental uncertainty. the results for residue 36 of CspA, and it is immedi-
It is clear from the above arguments tlﬁt cannot ately apparent that the poit for t,, = 4.88 does
a1 i L e L 1.8, e Y 8 b e i h . ) e region. s 5
that observed. On the other hand. valuessdfless consequence, it is not pos_S|bIe _to establish an upper

) ; . ' . . or lower bound o, for this residue, and for large

than 0.89 are now feasible, since they lead to predicted

. values oft, this will result in very large uncertain-
Jo values which are smaller than those observed, andties in S, as discussed above. Feng et al. did in fact
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Figure 7. Lipari-Szabo maps for two residues of CspA for which
Lipari-Szabo parameter estimation and ‘model selection’ could lead
to pathologies (see Discussion). The lines, curves, and boxes have
the same meanings as in Figure 3 above.

Figure 6. A ‘scatter plot’ of curves corresponding to the nonlinear
nullspace associated with the underdetermined ﬁ!fofr, Rex, and

S2 to Jo, JN, and Jy for the spectral densities and uncertainties
of residue 41 of CspA (using,, = 4.88 ns). One hundred points
uniformly distributed in the feasible/§, JN, Ju) region estimated
using Equations 9-10 were generated, and the four-dimensional

curve corresponding to the ¥, T, Rex, S}%) nullspace for each point the interpretation of ‘model selection’ results for this

residue. Alternatively, one could simply report an up-
per bound onRkex, and not make an explicit choice as
to whetherRey is exactly equal to zero or not (Andrec
etal., 1999).

Many of the results above implicitly assume that
T, IS known precisely. This is not normally the case,
recognize the very large uncertainty i#a, and for  ast,, must usually be determined from the relaxation
that reason did not report an error estimate for that data along with the internal motional parameters (Fis-
parameter (Table 1). However, this earlier estimate cher et al., 1998; Andrec et al., 1999) and will have an
of the uncertainty inS; is likely too small, perhaps  associated uncertainty. Furthermore, most biological
because of inadequate exploration of the parametermacromolecules are not spherically symmetric, and
space by the Monte Carlo error estimation method. therefore their rotational diffusion cannot be described
The results for residue 42 (Figure 7b) illustrate another by a single rotational correlation time. However, if the
potential difficulty that can arise in classical Lipari— deviation from spherical symmetry is not large and the
Szabo analyses. In this case, a part of the feasifale ( internal motions are sufficiently well behaved, then the
Ju) region overlaps the region defined by the upper spectral density is well approximated by Equation 1 or
and lower bound isogJontours, while most of it lies 2 with an apparent,, that depends on the mean orien-
outside of that region. This implies that although the tation of the bond vector in the molecule (Schurr et al.,
data could be fit to within the estimated experimen- 1994; Briischweiler et al., 1995; Andrec et al., 2000).
tal errors withRex = 0 (which was the conclusion  Given structural information and an estimate of the
of the MODELFREE analysis), this ‘model selection’ approximate tensor parameters based on the relaxation
may be ambiguous, and caution should be exercised indata (Schurr et al., 1994; Briischweiler et al., 1995;

was determined. The projections of that family of curves ontcsfne
VST, Rex VST, andSJ% vs t planes are shown. Taken together, these
represent the ‘tube’ througtSi, T, Rex, S;)—space that is consistent
with the spectral density estimates for residue 41 of CspA.
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Figure 8. A superposition of three Lipari-Szabo maps for the spectral density values of residue 41 for three different valukEsanstrating
the effect oft,, uncertainty on Lipari-Szabo parameter estimates and ‘model selection’ (see Discussion). Itis clear that a ehaoige fns
(due to statistical uncertainty or the effects of anisotropy) can change the ‘model selection’ quite dramatically.

Lee et al., 1997; Clore et al., 1998), one can generatethat it is model-independent and more general than the
Lipari-Szabo maps where anisotropy information is Lipari—-Szabo model. Lipari-Szabo mapping allows us
encoded in appareny, values. to state precisely when the results of spectral density
Several general trends are immediately apparent mapping are inconsistent with the simple or ‘extended’
from the geometry of the Lipari-Szabo map. First Lipari-Szabo models (Equations 1 and 2 with or with-
of all, given an observed/fy, J4) point, a decrease out Rex = 0). Specifically, spectral densities can be
in T, will be correlated with an decrease in the es- inconsistent with the Lipari—-Szabo model either be-
timated value oft, as has been observed previously cause (1)Yn andJy cannot be fit using Equation 1 or
(Andrec et al., 1999). This correlation will be more 2 irrespective of the value a%, or (2) Jo cannot be fit
prominent the closer the observef\( Jy) point is simultaneously witlyy andJy. Situation (1) can arise
to P, = (J,il”gid)@m), ]gigid)(-cm))_ Furthermore,  in one of two ways. The/y and Ju values could lie
changes irt,, cause a shift in the isdg contour fora  outside the region of the/(, Ju) plane enclosed by
given value of/o. This can result in dramatic changes the ‘rigid tumbling’ curve of Figure 1a, in which case
in the ‘model selection’ as a function ef,, as can be the spectral densities cannot be fit with the Lipari—
seen in Figure 8. In this case, changes in the assumedSzabo model for any value af,. We conjecture that
1,, of less than 500 ps result in substantial changes such spectral densities are also inconsistent with any
to the interpretation of the data: g}, = 4.0 ns, the physically realistic model for internal motions. Alter-
spectral densities are well fit by the simple Lipari— hatively, theJ/y and Ju values might lie inside the
Szabo model, while at 4.5 ns they clearly require the ‘rigid tumbling’ curve but below thet, = 0 line’
‘extended’ model. This is due primarily to the shifting passing througtP; = (J,f,”g'd)(tm), J,S”g'd)(tm)) and
of the iso-/p contours relative to the feasibléy, Ju) the origin for a given value of;,, or, equivalently, that
region as a function of,,. < Ty (Equation 15). In that case, the spectral
Proponents of the spectral density mapping ap- densities cannot be fit with the Lipari-Szabo model for
proach to the analysis of NMR relaxation data have that value oft,, but could be fit with a larget,, such
argued that the method has the significant advantagethatt,, > ™", Situation (2) can only arise ifo is

m
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smaller than thelém'”) calculated using Equation 25 to separate those degrees of freedom assuming that
for the estimated values df and.Jy, since any other  they are in principle separable, and the Lipari-Szabo
value of Jp can be fit with an appropriate value Bfx mapping procedure described here can be used to in-
and/orSJ%. As discussed above, such spectral densities terpret spectral density estimates within the context of
are inconsistent with the Lipari—-Szabo model of Equa- the Lipari-Szabo formalism with minimal investment
tions 1 and 2 independent of any, estimate. Any in software and computing time.

values of/y, Jn, andJy that do not fall into these three Lipari-Szabo mapping requires minimal comput-
categories can be fit with the Lipari-Szabo model. Ob- ing time, and can be used as an initial ‘screening’
viously, it is possible that relaxation data whichn or ‘pre-processing’ step prior to a more rigorous and

be fit by the Lipari-Szabo model could result in re- computationally intensive analysis. In particular, it can

duced spectral density estimates which cannot be fit be used to detect the presence of significant multiple

by the Lipari—-Szabo model due to the approximations minima in 2, as well as identify possible ‘model

inherent in reduced spectral density mapping. selection’ ambiguities. Given an estimate of a feasi-
ble range fort,, (possibly making use of information
from a rough estimate of the diffusion tensor para-

Conclusions meters), it can be used to identify residues for which
‘model selection’ will be strongly influenced by, .

We have shown that there exists a simple graphical re- Furthermore, the nonlinear optimization methods used

lationship between reduced spectral density estimatesin software packages such as MODELFREE (Man-

and the parameters of the Lipari-Szabo model, and del et al., 1995) are easily trapped by local minima

that one can easily obtain estimates of Lipari-Szabo or strong nonlinearities, necessitating extensive grid

parameters directly from the spectral density esti- searching to ensure that the algorithm finds a true

mates. Furthermore, we have shown that the procedureglobal optimum. The methods described here could be

of ‘model selection’ as it is currently used in Lipari- used as a supplement or alternative to grid searching

Szabo analysis can be related to the degree of internalfor more efficient location of good starting points for

consistency of the observeld, Jn, and Jy spectral nonlinear optimization.

densities, and that this degree of consistency can be

visualized graphically. The relationship between the

Lipari—-Szabo model and spectral density estimates hasAppendix

been explored in the past (Lefévre et al., 1996), and

a method for ‘model selection’ based on a qualitative We can make use of the linear relationship between

comparison of the relative magnitudes f&f and Ju Ry andR, (Fushman et al., 1994) to construct a poly-

has been proposed earlier (Ishima et al., 1995). This nomial int analogous to Equation 18 above which is

work puts that qualitative relationship on a firm quanti- immune to any inaccuracies arising from the reduced

tative footing. It also shows under what circumstances spectral density mapping approximation. We begin by

the spectral density estimates are inconsistent with the noting (in analogy to Equation 16) that

Lipari-Szabo model.

It has been suggested that the use of spectral den-
sity estimates fo.r the study of internal motions in whereRi”gid)(r) andeigid)(r) are the relaxation rates
macromolecules is preferable to methods based on theregponding to a single Lorentzian with correlation
Lipari-Szabo form_allsm because spectra_ll density esti- time <, and the constantsandd are given by
mates are model-independent and are in some sense o
more general (Peng and Wagner, 1992a). While it RUID ¢y — RLODS
is true that spectral densities are model-independent, = Rrigid(_[ ) — RObS

I S L . 1 m 1
their interpretation in terms of an intuitive physical
description of the internal motions cannot be done and
in thg_ absence_ qf a moqlel. In particular, ;pectral d = R)(Crigid>(Tm) _CR(lrigid>(rm).
densities contain information not only about internal
motions, but also about the overall tumbling of the EXpanding and collecting terms, we find that

rr_10|ecu|e. The Lipari-Szabo formalism provides the w6+ Ats+ B+ Cta+ Do+ Et+ F =0, (A2)
simplest and most general method that can be used

RV (1) 4 d = RII (v), (A1)




where

2 | bc alc+1) 6a(c — 1)
A=—|=

5 | wf (o —oN)?  (@H + on)?

B = o’ + (wn — on) 2 + (oH + on) 72,

2| alc+1)+bc

5d | w2 (oH — on)?
a(7c —5) i|

(wH — oN)?(0H + on)? ]

6a(c — 1) + bc
o (oH + on)?2

D = wﬁz(wH —on) 2+ wﬁz(wH + on) 72
+(oH — oN) 2(wH + on) 4,
2 a(7c —5) + bc
5d 02 (wH — oN)2(wH + ©oN)2’
and

F= wﬁz(wH — on) 2o + on) 72

The constanta and b are defined in Equation 8.
Clearly, this sixth degree equation cannot be solved in
a noniterative fashion. However, if one is concerned

about inaccuracies due to the reduced spectral den-
sity approximation, one can determine an approximate

value of t using Equation 18, which can be used as
a starting value for the numerical solution of Equa-
tion A2 using standard iterative root-finding methods
(Press et al., 1992). Since the solution obtained from
Equation 18 is likely to be very close to a root of Equa-
tion A2, this strategy may be more generally robust
than direct nonlinear optimization 6% andx,.
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