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Abstract

In this paper, we explore connections between the Lipari–Szabo formalism and reduced spectral density mapping,
and show how spectral density estimates can be associated with Lipari–Szabo parameters via a simple geomet-
ric construction which we call Lipari–Szabo mapping. This relationship can be used to estimate Lipari–Szabo
parameters from spectral density estimates without the need for nonlinear optimization, and to perform ‘model
selection’ in a graphical manner. The Lipari–Szabo map also provides insight into the Lipari–Szabo model, and
allows us to determine when a given set of experimental spectral densities are inconsistent with the Lipari–Szabo
formalism. Practical applications of Lipari–Szabo mapping in conjunction with more traditional analysis methods
are discussed.

Abbreviations:CspA, cold-shock protein A; CSA, chemical shift anisotropy.

Introduction

Dynamics play a significant role in the biologi-
cal functions of proteins and other macromolecules
(McCammon and Harvey, 1987; Brooks et al., 1988;
Jardetzky, 1996), and NMR relaxation is a powerful
tool for the study of molecular motion in these mole-
cules (Levy and Keepers, 1986; Palmer, 1997; Fischer
et al., 1998). As molecular motions are stochastic
processes, they can be described in terms of a time
correlation functionC(t). Observable NMR relaxation
rates can then be expressed as functions ofC(t) or
more conveniently, the spectral density functionJ(ω),
which is simply the Fourier transform ofC(t) and
describes the frequency content of the motion experi-
enced by a given spin or spin pair (Fischer et al., 1998).
The dependence of relaxation rates onJ(ω) for various
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relaxation mechanisms is well known (Cavanagh et al.,
1996; Fischer et al., 1998). For example, in an isolated
heteronuclear spin pair (1H and15N for the purposes
of this paper) subject only to dipole-dipole and chemi-
cal shift anisotropy (CSA) relaxation mechanisms, the
longitudinal relaxation rateR1, the transverse relax-
ation rateR2, and the heteronuclear cross-relaxation
rateRx (obtained experimentally from the steady-state
heteronuclear NOE) of the15N spin are given by lin-
ear combinations ofJ(ω) evaluated atω = 0, ωN,
ωH − ωN, ωH, andωH + ωN. Thus, a description of
the motions experienced by a heteronuclear spin pair
in the form of the time-correlation or spectral density
function provides sufficient information to predict the
heteronuclear relaxation rates. However, the inverse
problem of learning about the motions from knowl-
edge of the relaxation rates is much more difficult.
First of all, it is not possible to define the shape of
a function (e.g., the spectral density) based on a fi-
nite number of experimental measurements, unless we
assume some model for the function which contains
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a finite number of adjustable parameters less than or
equal to the number of measurements. Furthermore,
even a fully determined spectral density function may
not contain sufficient information to establish the na-
ture of the physical motion, since very different mo-
tional processes can lead to indistinguishable spectral
densities (Lipari and Szabo, 1982).

Since only a finite number of points on theJ(ω)
curve contribute to the experimentally observable re-
laxation, one could avoid the use of any model by
estimating only those values ofJ(ω) which contribute
to the experimental data, rather than trying to estimate
the entire functional form ofJ(ω). These values would
then constitute a quantitative model-independent de-
scription of the spectral density funtion resulting from
the motion experienced by an internuclear vector, in-
cluding the overall tumbling of the molecule and any
internal motions that may be present. This strategy,
known as spectral density mapping, was first pro-
posed by Peng and Wagner (Peng and Wagner, 1992b).
Their original approach, however, was made cumber-
some by the fact that the three commonly measured
relaxation rates (R1, R2, andRx ) are insufficient to
uniquely determine the five spectral density values
(J(0), J(ωN), J(ωH), andJ(ωH ± ωN)), and experi-
ments to measure other relaxation rates, such as those
of two spin order and antiphase coherences, had to be
devised. More recently, the spectral density mapping
approach has since been reformulated assuming that
J(ωH−ωN)≈ J(ωH)≈ J(ωH+ωN), or thatJ(ω)∝ω−2

for largeω, thereby reducing the number of unknowns
from five to three (the so-called ‘reduced spectral den-
sity mapping’ method) (Farrow et al., 1995; Ishima
and Nagayama, 1995). SinceR1,R2, andRx are linear
functions ofJ(ω), one can obtain theJ(ω) values by
solving a system of linear algebraic equations, mak-
ing the analysis mathematically very straightforward
(Fischer et al., 1998). Unfortunately, the resulting
J(ω) values cannot be easily visualized in terms of a
physical description of the motion, especially since
they represent a superposition of information about the
internal and overall motional degrees of freedom.

In order to obtain a physical description of the
internal motion, most analyses of NMR relaxation
data assume some functional form forJ(ω), the ad-
justable parameters of which have an intuitive physical
meaning. One can imagine many physically reason-
able models for the motion experienced by a particular
internuclear vector (such as n-site jump or diffusion
in a cone), and expressions forC(t) have been de-
rived for a number of such models (Daragan and

Mayo, 1997). As mentioned above, there is usually
not enough information in the rather limited number
of noise-corrupted relaxation data typically measured
to unambiguously reject all but one possible physical
model. This difficulty prompted Lipari and Szabo to
develop a functional form forJ(ω) which contains a
minimal number of adjustable parameters and which
does not depend on the assumption of a precise phys-
ical model for its validity (Lipari and Szabo, 1982).
This formalism, known as the ‘model-free’ approach,
has proved to be extremely popular for the analysis
of NMR relaxation data (Palmer, 1997; Fischer et al.,
1998).

In this paper, we explore the relationship between
the Lipari–Szabo formalism and reduced spectral den-
sity mapping. Based on this relationship, we show
how the spectral density estimates can be associated
with Lipari–Szabo parameters via a simple geometric
construction, which we call Lipari–Szabo mapping.
This graphical procedure compares the location of ex-
perimentally estimated spectral densities relative to a
parametric curve representing the spectral densities for
a single Lorentzian. We show how the Lipari–Szabo
mapping can be used to perform ‘model selection’
(the decision whether contributions from conforma-
tional exchange or multiple timescale motions must
be invoked to fit the data for a given residue), and
determine when a given set of experimental spectral
densities are inconsistent with the Lipari–Szabo for-
malism. Previously, we proposed a graphical approach
for visualizing the uncertainty of the Lipari–Szabo
parameters based on a direct propagation of the experi-
mental uncertainties (Jin et al., 1997, 1998). However,
that method was limited to the case where there was
no conformational exchange or multiple timescale mo-
tions. The Lipari–Szabo mapping method addresses
this deficiency. It is our belief that the detailed quan-
titative study of macromolecular dynamics via NMR
relaxation requires more than three relaxation data per
residue as well as more powerful, statistically rigor-
ous analysis methods (Andrec et al., 1999, 2000).
Lipari–Szabo mapping is intended as a means of bet-
ter understanding the information content of the three
commonly measured NMR relaxation data (R1, R2,
and NOE at one field strength), as a method for
quickly evaluating whether or not such relaxation data
for a particular residue can be fit using the Lipari–
Szabo formalism at a given overall tumbling correla-
tion time, and as a supplement to existing software for
the analysis of these data.
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Theory and methods

In the Lipari–Szabo model-free formalism, the spec-
tral density function for the motion of a given bond
vector is given by

J (ω) = 2

5

[
S2τm

1+ ω2τ2
m

+ (1− S
2)τ

1+ ω2τ2

]
, (1)

whereS2 is a measure of the spatial restriction of the
internal motion,τe is a measure of the timescale of
the internal motion,τm is the rotational correlation
time for the overall isotropic tumbling, andτ−1 =
τ−1
e + τ−1

m (Lipari and Szabo, 1982). If the internal
motion is very rapid (i.e. in the ‘extreme narrow-
ing limit’), then τe approaches zero, whereas if there
is no internal motion, thenS2 is unity. It has been
found that not all protein15N NMR relaxation data
can be fit well to a spectral density of the form of
Equation 1. In particular, it is sometimes necessary to
account for chemical exchange effects by adding an
exchange contributionRex = ω2

N8ex to the predicted
R2, whereωN is the Larmor frequency of15N and
8ex is a constant that depends on the chemical shift
differences, populations, and interconversion rates for
the exchanging species (Fischer et al., 1998). Further-
more, it is sometimes necessary to invoke motion on
two widely separated time scales to adequately fit the
data, resulting in the so-called ‘extended model-free
approach’ of Clore et al. (1990):

J (ω) = 2

5
S2
f

[
S2
s τm

1+ ω2τ2
m

+ (1− S
2
s )τ

1+ ω2τ2

]
, (2)

where S2
s is the order parameter for the slow mo-

tion, S2
f is the order parameter for the fast motion,

and τe is the effective correlation time for the slow
motion (the fast motion is assumed here to be in the
extreme narrowing limit). It is possible, however, that
some experimental data cannot be fit even using these
extensions.

We will assume that three experimental relaxation
measurements at a single field strength (R1, R2, and
heteronuclear steady-state NOE) are available, and
that their uncertainties are described by uncorrelated
normal probability densities with meansµ1, µ2, µN,
and standard deviationsσ1, σ2, σN, respectively. Since
the spectral density values are linearly related toR1,
R2, and the cross-relaxation rateRx , it is first nec-
essary to estimateRx from the experimentalR1 and
NOE measurements using the relation

Rx = (γN/γH)(NOE− 1)R1, (3)

whereγN andγH are the gyromagnetic ratios of15N
and1H, respectively (Fischer et al., 1998). The uncer-
tainty in Rx is then given by the probability density
of the product of the two normally distributed random
variablesx andy, wherex = (γN/γH)(NOE − 1)
has mean (γN/γH) (µN − 1) and standard deviation
|γN/γH| σN andy = R1 has meanµ1 and standard
deviationσ1. Although the probability density ofRx in
general cannot be written in closed form (Craig, 1936),
it can be well-approximated by a normal density with
mean

µx = (γN/γH)(µN − 1)µ1, (4)

and standard deviation

σx =
∣∣∣∣γN

γH

∣∣∣∣√σ2
Nµ2

1+ σ2
1(µN − 1)2 (5)

determined using traditional ‘propagation of errors’
(Bevington, 1969) ifP(x) andP(y) do not have appre-
ciable density atx = 0 ory = 0. In that limit, we also
find that there is minimal correlation betweenR1 and
Rx .

In the reduced spectral density mapping method,
the relationship between the relaxation ratesR1, R2,
andRx and the spectral density is given by the linear
system

A j = d, (6)

where j = (J(0) J(ωN) J(0.87ωH))T , d = (R1 R2
Rx )T ,

A =
 0 b 7a

2
3b

1
2b

13
2 a

0 0 5a

 (7)

a =
(

µ0hγHγN

16π2r3
NH

)2

, b = 3a + (ωN1σ)2

3
, (8)

µ0 is the permeability of free space,h is the Planck
constant,rNH is the mean N–H bond length, and1σ

is the magnitude of the CSA for15N. For a1H field
strength of 500 MHz,rNH = 1.02 Å, and1σ =
−160 ppm, we obtaina ≈ 1.2985 andb ≈ 4.762 for
j in units of ns/rad andd in units of Hz. For notational
convenience, we will represent the three spectral den-
sity values in Equation 6 asJ0 ≡ J (0), JN ≡ J (ωN),
andJH ≡ J (0.87ωH). The estimation of the value and
uncertainty ofj given the value and uncertainty ofd is
a linear problem, and its solution is particularly sim-
ple, especially if viewed from a Bayesian perspective
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(Sivia, 1996), where we can summarize the informa-
tion about the spectral density values in the form of a
posterior probability density function. In the case of a
uniform prior density overj the posterior probability
density ofj is given by a multivariate normal density
with mean

µj =
(
AT 6−1

d A
)−1

AT 6−1
d d (9)

and covariance matrix

6j =
(
AT 6−1

d A
)−1

, (10)

where

6d =
 σ2

1 0 0
0 σ2

2 0
0 0 σ2

x

 (11)

is the covariance matrix describing the uncertainty in
the relaxation data (Ó Ruanaidh and Fitzgerald, 1996).
Thus, the uncertainty inj can be estimated directly via
Equation 10 without the need for Monte Carlo error
estimation methods.

In keeping with the semi-quantitative spirit of this
paper, we will approximate the uncertainty inj by a
box with sides parallel to theJ0, JN, andJH axes cen-
tered atµj and having widths equal to 3(6j )

1/2
ii (1.5

standard deviations about the mean). We will further
assume that allj values inside this box are feasible
(i.e. have equal and finite posterior probabilities), and
those outside are not (i.e., have posterior probability
zero). Since the diagonal elements of6j represent the
variances of the marginal densities of each element of
j , this box represents a conservative estimate of the
uncertainty inj . Of course, one could more rigorously
represent the uncertainty as a smooth function or as
ellipsoidal confidence bounds; however, we believe
that a box representation of the uncertainty is not un-
realistic and more appropriate for the purposes of this
paper. In general, the neglect of statistical correlations
among the spectral densities will tend to overestimate
the uncertainties in our analyses. If accurate quantita-
tive uncertainty estimates are required, we recommend
the use of more rigorous statistical parameter estima-
tion methods (Andrec et al., 1999, 2000). It should be
noted, however, that all of the theoretical relationships
between Lipari–Szabo parameters and spectral den-
sity values derived below are rigorous. On the other
hand, the derivation of spectral density values from ex-
perimental relaxation data and their uncertainties are
correct only to within the approximation of reduced
spectral density mapping, and the estimates of uncer-
tainties in the Lipari–Szabo parameters and ‘model

Figure 1. (a) The parametric curve (J (rigid)
N (t), J (rigid)

H (t)) cor-
responding to all possible (JN, JH) points consistent with rigid
isotropic tumbling (Equation 12). The circles are labeled with the
values oft corresponding to that point on the curve. The curve con-
tinues to approach the origin ast approaches infinity. (b) The shaded
region indicates the (JN, JH) points consistent with internal motions
described by Equation 1 or 2 for an overall tumbling correlation time
of 4.5 ns. PointP1 represents the (JN, JH) point for Equation 1
with τm = 4.5 ns andS2 = 1. PointP2 represents the (JN, JH)
point for Equation 1 withτ = 200 ps andS2 = 0. The line segment
connectingP1 andP2 represents the (JN, JH) points consistent with
Equation 1 withτm = 4.5 ns,τ = 200 ps and 0< S2 < 1. Point
P3 represents the (JN, JH) point for Equation 1 withτm = 4.5 ns,
τ = 200 ps andS2 = 0.8. PointP4 represents the (JN, JH) point
corresponding to the smallest possibleτm consistent with pointP3
(for which τe andτ would be zero).

selections’ based on those estimates are valid only to
within the box-function approximation of the uncer-
tainty in j . For demonstration purposes, we will make
use of15N relaxation data for the major cold-shock
protein fromEscherichia coli(CspA) (Table 1), for
which a standard analysis performed using the MOD-
ELFREE software package (Mandel et al., 1995) has
been published (Feng et al., 1998).
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Table 1. Relaxation data, spectral density estimates, and MODELFREE parameter estimates for the
selected residues of CspA shown in Figures 3 and 7

Residue Relaxation Spectral MODELFREE parameter estimatesc

number data density

(R1, R2, estimates S2 τc Rex S2
f

NOE)a (J0, JN, JH)b (or S2
s )d (ps) (s−1)

29 2.16± 0.08 1.72 ± 0.03

6.57± 0.08 0.44 ± 0.02 0.77± 0.03 0 0.71± 0.24 1

0.72± 0.07 0.009± 0.002

36 2.68± 0.12 1.79 ± 0.05

7.08± 0.14 0.54 ± 0.03 0.92± 0.02 105± −e 0 1

0.70± 0.09 0.012± 0.004

41 2.21± 0.07 1.06 ± 0.02

4.57± 0.06 0.42 ± 0.02 0.69± 0.02 232± 56 0 0.86± 0.02

0.29± 0.04 0.025± 0.002

42 2.07± 0.10 1.44 ± 0.04

5.68± 0.10 0.39 ± 0.02 0.71± 0.01 142± 38 0 1

0.35± 0.07 0.021± 0.002

46 1.93± 0.10 2.29 ± 0.06

8.33± 0.17 0.36 ± 0.02 0.58± 0.02 288± 89 3.58± 0.22 1

0.13± 0.05 0.026± 0.002

57 2.37± 0.22 1.42 ± 0.06

5.75± 0.16 0.46 ± 0.05 0.74± 0.02 93± 45 0 1

0.52± 0.09 0.018± 0.004

69 2.27± 0.15 1.56 ± 0.05

6.12± 0.13 0.46 ± 0.03 0.80± 0.02 0 0 1

0.70± 0.09 0.011± 0.003

aRelaxation rates (in s−1) and steady state NOE values and their uncertainties (± 1 standard deviation)
measured by Feng et al. (1998).
bSpectral density values (in ns/rad) and their uncertainties (± 1 standard deviation) estimated using Equa-
tions 4–11.
cLipari–Szabo parameter estimates reported by Feng et al. (1998) using aτm estimate of 4.88 ns.
dReported value isS2 (Equation 1) ifS2

f
= 1, otherwise the reported value is S2

s (Equation 2).
eError estimate could not be determined reliably from previous statistical analysis (Feng et al., 1998).

Results

Relationship between reduced spectral density
mapping and the simple Lipari–Szabo model

In order to investigate the relationship between Equa-
tion 1 and the results of reduced spectral density
mapping, let us first consider the family of possible
(JN, JH) values for rigid isotropic tumbling (i.e., the
single Lorentzian of Equation 1 withS2 = 1). This
is given by the parametric curve (J (rigid)

N (t), J (rigid)
H (t))

for 0≤ t <∞ (Figure 1a), where

J
(rigid)
i (t) = 2

5

t

1+ ω2
i t

2
(12)

As can be seen in Figure 1a, this curve is approx-
imately triangle-shaped, with the three sides corre-
sponding to the regimes ofωt � 1, ωt ≈ 1, and
ωt � 1. Thus, if experimental (JN, JH) spectral
density values coincide with this curve to within ex-
perimental error, then the data are consistent with rigid
tumbling for some value ofτm. It is much more likely,
however, that the experimental (JN, JH) values do not
coincide with this curve due to the effects of internal
motion. Let us next consider the family of (JN, JH)
values consistent with Equation 1 for a given value of
τm andτ (τ−1 = τ−1

e + τ−1
m ), and all possible values

of S2. Substituting into Equation 1, we find that this is
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given by the parametric curve

JN = S2
(
J
(rigid)
N (τm)− J (rigid)

N (τ)
)

+J (rigid)
N (τ)

0≤ S2 ≤ 1.

JH = S2
(
J
(rigid)
H (τm)− J (rigid)

H (τ)
)

+J (rigid)
H (τ)

(13)

Equating the two parts of Equation 13 after solving for
S2, we find that the curve of Equation 13 is equivalent
to

JH − J (rigid)
H (τ)

J
(rigid)
H (τm)− J (rigid)

H (τ)
=

JN − J (rigid)
N (τ)

J
(rigid)
N (τm)− J (rigid)

N (τ)
, (14)

which is simply the equation for the straight line
in the (JN, JH) plane passing through the points
P1 = (J (rigid)

N (τm), J
(rigid)
H (τm)) andP2 = (J (rigid)

N (τ),

J
(rigid)
H (τ)), as shown in Figure 1b. Comparison with

Equation 1 shows that pointsP1 andP2 simply repre-
sent the contributions from theτm/(1 + ω2τ2

m)- and
τ/(1 + ω2τ2)-containing terms of the Lipari–Szabo
spectral density, respectively. AsS2 varies from 1 to
0, the spectral densities move along this line fromP1
to P2, and the ratio of the distance between a given
point on the line andP2 to the distance betweenP1
andP2 is equal to the value ofS2. Changes in the
internal correlation timeτe result in the movement of
point P2 along the ‘rigid tumbling’ curve from the
origin (for τe = τ = 0) to P1 (τe → ∞). Further-
more, it is apparent that the set of all possible (JN,
JH) values consistent with Equation 1 for an indepen-
dently determined value ofτm consists of the region
below the ‘rigid tumbling’ curve and above the line
passing throughP1 and the origin (corresponding to
τe = 0) and is indicated by the gray region in Fig-
ure 1b. It is also apparent that for very largeτe values
(such thatτ approachesτm) the P1-P2 distance be-
comes quite short, and large changes inS2 result in
correspondingly smaller changes inJN andJH. Thus,
uncertainties inS2 are much larger whenτe is large
for equivalentJN and JH uncertainties, as has been
demonstrated previously using other methods (for ex-
ample, Jin et al., 1998). The linear relationship of
Equation 14 is clearly not specific toωN andωH, but
is true for spectral densities evaluated at any pair of
frequencies when Equation 1 is valid (withRex = 0),
as has been noted previously (Lefèvre et al., 1996;
Guenneugues et al., 1999). Furthermore, such a lin-

ear relationship also exists for the relaxation ratesR1,
R2, andRx , as has been pointed out previously by
Fushman et al. (1994). In principle, one could recast
all of the results in this paper in terms of correla-
tions between the observed relaxation rates and those
predicted by rigid tumbling, however the resulting
equations would be considerably more cumbersome
(cf. Appendix).

In the above construction, it was assumed that
an independent estimate ofτm is available. How-
ever, knowledge of an experimental (JN, JH) point
allows us to establish a lower bound onτm that is
independent of any such estimate. This minimumτm
corresponds to the value oft at which the ‘rigid tum-
bling’ curve (J (rigid)

N (t), J (rigid)
H (t)) intersects the line

passing through the given (JN, JH) point and the origin
(i.e., τe = 0) (pointP4 in Figure 1), and corresponds
to the case of a single Lorentzian in Equation 1. Its
value is given by

τ(min)
m =

√
JN − JH

JHω2
H − JNω2

N

. (15)

In most cases, this bound will be of little practical
use, as it will almost always be less than≈ 3 ns (the
t value corresponding to the second ‘corner’ in the
curve of Figure 1a). However, it will be seen below
that τ(min)

m is also numerically equal to the maximum
possible value ofτ consistent with a (JN, JH) point if
we allowS2

f 6= 1, and this will play an important role
in understanding the feasible ranges of the extended
Lipari–Szabo parameters.

The above geometric construction relating Lipari–
Szabo parameters to a point in the (JN, JH) plane
also allows us to calculate the values ofS2 and τe
in Equation 1 consistent with a given (JN, JH) point
and a given value ofτm without the need for nonlinear
optimization or any other iterative numerical method.
Consider a pointPobs = P3 = (J

(obs)
N , J

(obs)
H ) in

the gray region in Figure 1b. To find what values of
S2 andτ are consistent withPobs at the given value
of τm, we first construct the line throughPobs and
P1 = (J (rigid)

N (τm), J
(rigid)
H (τm)), which is given by

JH = cJN + d, (16)

where

c = J
(rigid)
H (τm)− J (obs)

H

J
(rigid)
N (τm)− J (obs)

N

and

d = J (rigid)
H (τm)− cJ (rigid)

N (τm).
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The value ofτ corresponds to the point at which the
line of Equation 16 intersects the ‘rigid tumbling’
curve, i.e., it is a root of the equation

cJ
(rigid)
N (τ)+ d = J (rigid)

H (τ).

Expanding and collecting terms, we find that

(5
2c
−1dω2

Hω2
N)τ

4+ (ω2
H − ω2

Nc
−1)τ3

+(5
2c
−1dω2

Hω2
N)τ

2+ (1− c−1)τ+ 5
2c
−1d = 0,

(17)

which is a quartic equation inτ. However, we know
(by construction) that one of the roots of this equa-
tion must beτ = τm. Dividing the left-hand side of
Equation 17 by (τ − τm), we obtain finally the cubic
equation

τ3+ Aτ2+ Bτ+ C = 0, (18)

where

A = 5(J (obs)
N ω2

NkN − J (obs)
H ω2

HkH)+ 2τm(ω
2
H − ω2

N)

5ω2
Hω2

Nτm(J
(obs)
H kH − J (obs)

N kN)
,

B = 5(J (obs)
H ω2

NkH − J (obs)
N ω2

HkN)+ 2τm(ω
2
H − ω2

N)

5ω2
Hω2

N(J
(obs)
H kH − J (obs)

N kN)
,

C = −1

ω2
Hω2

Nτm
,

and

ki = 1+ ω2
i τ

2
m.

A numerical solution for the real root(s) of Equa-
tion 18 can be obtained using a closed-form, non-
iterative method (Press et al., 1992). Onceτ has been
found, we can locateP2 = (J (rigid)

N (τ), J (rigid)
H (τ)), as

well as convertτ into τe using the relation

τe = τmτ

τm − τ
. (19)

The value ofS2 can then be calculated from

S2 = d(Pobs, P2)

d(P1, P2)
, (20)

where d( ) is the Euclidean distance between two
points in the (JN, JH) plane. Since the presence of
chemical exchange contributes only toJ0 (see below),
the solution outlined above remains valid whether or
not Rex = 0. Therefore, it is possible to determine
the values ofS2 andτe in a direct, noniterative man-
ner without the need to explicitly estimateRex. As
mentioned above, one could make use of the linear
relationship betweenR1 andRx to construct a poly-
nomial in τ analogous to Equation 18 above which

would be immune to any inaccuracies arising from
the reduced spectral density mapping approximation.
However, such a strategy results in a sixth-order
polynomial which cannot be solved in a noniterative
manner (see Appendix).

Mapping of J0 information onto the (JN, JH) plane
and ‘model selection’

Thus far, we have only made use of the values ofJN
andJH. In this section, we show below how to incor-
porateJ0 information into theJN vsJH plot described
above to create the full ‘Lipari–Szabo map’. It will
be seen below that this is critical, since the detection
of deviations from simple Lipari–Szabo behavior re-
quires the simultaneous analysis ofJ0, JN, and JH
information. For the moment, however, let us assume
that Equation 1 (withRex = 0) is valid for a given
residue and thatJ0 is known precisely. Given values
for J0, τ, andτm, we can solve Equation 1 forS2:

S2 =
5
2J0− τ

τm − τ
(21)

Equation 21 specifies a curve (an ‘iso-J0 contour’)
through (S2, τ) space as a function ofτ(0 ≤ τ ≤ 5

2J0)

which gives a constant value ofJ0 when substituted
into Equation 1 with a givenτm. One can readily con-
vert Equation 21 into an equivalent iso-J0 contour in
the (JN, JH) plane, as shown in Figure 2. As can be
seen there, the iso-J0 contours move closer to the point
P1 = (J

(rigid)
N (τm), J

(rigid)
H (τm)) asJ0 increases, and

vice versa. We can determine the consistency of the
data with Equation 1 simply by plotting the experi-
mentalJN andJH spectral densities together with the
iso-J0 contour for the experimentalJ0 spectral density.
If the experimental (JN, JH) point coincides with the
iso-J0 contour to within experimental error, then the
data can be fit with Equation 1 to within experimen-
tal error. Otherwise, the data are not consistent with
Equation 1, and additional adjustable parameters must
be used to adequately fit the data. Of course, since
the representation of the uncertainties in the spectral
densities as a box is only approximate, this method
cannot be used as a statistically rigorous hypothesis
test. However, it can still be usefully employed as
an addition to existing analysis software to identify
possible model-selection ambiguities independently of
more formal statistical tests, as will be seen below,
especially since this approach is so well suited to
graphical representation.

As an example of the Lipari–Szabo mapping
approach to ‘model selection’, we have generated
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Figure 2. The ‘rigid tumbling’ curve (solid line), pointP1 = (J (rigid)
N (τm), J

(rigid)
H (τm)) for τm = 4.5 ns (filled circle), and the ‘τe = 0 line’

for τm = 4.5 ns (dot-dashed line), together with the ‘iso-J0 contours’ (Equation 21) forJ0 = 0.3, 0.9, 1.5, and 1.8 ns/rad (dashed lines).

Figure 3. Lipari–Szabo maps for selected residues of theE. coli major cold-shock protein CspA (Feng et al., 1998). The finalτm estimate
obtained by Feng et al. (4.88 ns) is used throughout. The dotted lines correspond to the iso-J0 contours forJ0 ± 1.5σ, and the rectangles
representJN ± 1.5σ andJH ± 1.5σ as estimated using Equations 9–10. The dot-dashed lines correspond to upper or lower bounds onτ

determined by the spectral density estimates.
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Lipari–Szabo maps for several residues of CspA (Feng
et al., 1998), assumingτm = 4.88 ns and isotropic
tumbling (Figure 3). The spectral densities and their
uncertainties were estimated using Equations 9 and
10 as described above. The Lipari–Szabo map for
residue 69 (Figure 3a) demonstrates that theJN and
JH estimates are consistent withτe = 0, since the
rectangle representing the uncertainties inJN andJH

overlaps the line passing throughP1 = (J
(rigid)
N (τm),

J
(rigid)
H (τm)) and the origin. Furthermore, theJN and
JH estimates are consistent with Equation 1, since the
iso-J0 contours corresponding to the minimum and
maximumJ0 values overlap the (JN, JH) uncertainty
box. This result agrees with the MODELFREE model
selection result (Table 1). It is clear from Figure 3a,
however, thatτ values as large as≈ 90 ps are still con-
sistent with the spectral density estimates, since such
τ values will still give rise toP1-P2 lines which inter-
sect both the (JN, JH) uncertainty box and the region
between the upper and lower bound iso-J0 contours.
If we assume thatτe = 0, then the feasible range
of S2 is determined completely by the feasible range
of J0, since both the maximum and minimum iso-J0
contours lie inside the (JN, JH) box forτe = 0. Using
the feasible range defined by± 1.5σ, i.e., 1.49≤ J0 ≤
1.64 ns/rad, we find from Equation 1 a feasible range
for the order parameter of 0.76≤ S2 ≤ 0.84, which
is in excellent agreement with the± 1.5σ bounds of
0.77≤ S2 ≤ 0.83 determined using MODELFREE
(Table 1).

The JN and JH spectral density estimates for
residue 57 (Figure 3b), on the other hand, are clearly
not consistent withτe = 0, since the rectangle rep-
resenting the uncertainties inJN and JH does not
overlap the line passing throughP1 = (J

(rigid)
N (τm),

J
(rigid)
H (τm)) and the origin. The iso-J0 contours indi-

cate that the spectral densities are still consistent with
Equation 1; however, their curvature results in two dis-
tinct regions of (S2, τ) space consistent with the data:
one with 40≤ τ ≤ 190 ps and the other with 390 ps≤
τ ≤ 1.4 ns. Only the former region was reported in the
MODELFREE analysis (Table 1). The presence of two
disjoint feasible (S2, τ) regions is confirmed using our
previously described graphical analysis method (Jin
et al., 1997) (Figure 4); however, the estimated ranges
of τ differ slightly. This may be a result of the box-
function approximation to the posterior probability of
j used in the present analysis or of a failure of the
reduced spectral density mapping approximation.

Detection and estimation of Rex contributions

Residue 29 (Figure 3c) is an example where the spec-
tral densities are not consistent with Equation 1. In
particular, theJN andJH spectral densities are simi-
lar to those of residue 69 (Figure 3a) in that they are
consistent withτe = 0. However, theJ0 estimates are
clearly larger than would be expected based on the ob-
servedJN andJH if Equation 1 were valid. This can be
seen in Figure 3c by noting that the iso-J0 contours do
not overlap the (JN, JH) feasible region, but are shifted
closer to the pointP1 = (J (rigid)

N (τm), J
(rigid)
H (τm)). As

has been noted previously (Peng and Wagner, 1995),
the presence of anRex contribution to the transverse
relaxation rate will result in an inflatedJ0 value while
leaving the other spectral densities unchanged, since
J0 contributes only toR2 (Equations 6–7). The magni-
tude ofRex can therefore be estimated by calculating
the apparentJ0 value that would result in an iso-J0
contour that passes through the observed (JN, JH)
point (J (app)

0 ). The value ofRex is then related to the
‘excess’J0 and is given by

Rex = 2
3b(J

(obs)
0 − J (app)

0 ), (22)

where the constantb is the same as in Equation 8
(Fushman et al., 1994; Peng and Wagner, 1995). For
residue 29, the feasible range forS2 is determined
completely by the uncertainty inJN if we assume that
τe = 0, and is given by 0.72≤ S2 ≤ 0.82, which
agrees very well with the± 1.5σ range estimated us-
ing MODELFREE (0.73≤ S2 ≤ 0.82). The range of
J
(app)
0 values consistent with this range ofS2 can be

found by substituting into Equation 1, and is given by
1.41≤ J (app)

0 ≤ 1.60 ns/rad. Taken together with the
upper and lower bounds on the observedJ0 in Table 1,
we estimate the feasible range forRex using Equation
22 to be 0.25≤ Rex ≤ 1.14 s−1 (compared to 0.35≤
Rex ≤ 1.07 s−1 MODELFREE estimate). It is appar-
ent from this analysis that values ofS2 andτ can be
estimated from the observed (JN, JH) values without
the need to estimate the value ofRex. This does not
imply, however, thatS2 andτ are uncorrelated with
Rex, since points within the feasible (JN, JH) region
further away fromP1 = (J

(rigid)
N (τm), J

(rigid)
H (τm))

which correspond to smaller values ofS2 will result
in larger estimates ofRex.

The situation is even more dramatic for residue
46 (Figure 3d), where the observedJ0 value is larger
than the maximum possible value forτm = 4.88 ns
(equal to2

5 τm = 1.95 ns/rad). In this case, the iso-
J0 contours are undefined and therefore they do not
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Figure 4. Results of the Jin et al. graphical method of Lipari–Szabo error propagation (Jin et al., 1997, 1998) for residue 57 of CspA calculated
usingτm = 4.88 ns. The curves correspond to contours of constantR1 (solid lines),R2 (dotted lines), and NOE (dashed lines) for the observed
data± 1.5 standard deviation. The region between each pair of curves corresponds to the set of (S2, τe) points consistent with that datum. The
intersection of those sets (shown in gray) are those values ofS2 andτe consistent with all of the data. The upper and lower bounds onτe are
given by 30≤ τe ≤ 190 ps and 0.9≤ τe ≤ 2.1 ns for the two disjoint feasible regions (corresponding toτ ranges of 30≤ τ ≤ 180 ps and 0.8≤
τ ≤ 1.5 ns, respectively).

appear in Figure 3d at all. The bounds onJN andJH
clearly precludeτe = 0, and since in this case the
J0 estimate provides no information that would re-
strict the feasible range ofS2 andτe, the feasible (JN,
JH) range provides an immediate estimate of lower
and upper bounds onτe of 100≤ τe ≤ 190 ps (Fig-
ure 3d), compared to the MODELFREE estimate of
150≤ τe ≤ 420 ps. Since the iso-J0 contours form
a monotonically increasing surface as we approach
P1 = (J (rigid)

N (τm), J
(rigid)
H (τm)) (Figure 2), the max-

imum and minimum values ofJ (app)
0 consistent with

the (JN, JH) box must lie on the edge of the box. In
this case, they correspond to the lower right and upper
left corners of the (JN, JH) box and are given by 1.04
≤ J (app)

0 ≤ 1.28 ns/rad. From this we can use Equa-
tion 22 to obtain a feasible range forRex of 2.92≤
Rex≤ 4.25 s−1, which is somewhat larger than, though
generally consistent with, the MODELFREE result of
3.25≤ Rex≤ 3.91 s−1.

Detection and estimation of multiple timescale motion

The ‘extended model-free approach’ of Clore et al.
(1990), which was devised to fit more complex mo-
tions occurring on multiple timescales, contains an
additional order parameter (S2

f , Equation 2) compared

to the simple Lipari–Szabo model. If we allowS2
s to

play the same role asS2 in the above analysis, then
allowing S2

f 6= 1 simply has the effect of moving a
point in (JN, JH)-space that is consistent with Equa-
tion 1 along a straight line toward the origin (since
Equations 1 and 2 differ only by the overall scal-
ing factor S2

f ). Such a translation obviously cannot
move a (JN, JH) point outside of the shaded region
of Figure 1b. Thus, all (JN, JH) points consistent with
Equation 2 are also consistent with Equation 1 for dif-
ferent values of the internal motional parameters, and
vice versa. Therefore, the determination that the ex-
tended Lipari–Szabo model is required to fit the data
to within experimental uncertainty can be done only
via a simultaneous analysis ofJ0, JN, andJH.

Knowledge ofJN andJH alone, however, is suf-
ficient to determine upper and lower bounds toτ, as
well as a lower bound toS2

f . Consider a point in the
interior of the feasible (JN, JH) region (say, pointP3
in Figure 5a). To be consistent with this point,S2

s and
τ must be chosen such that the values

J ′N =
2

5

[
S2
s τm

1+ ω2
Nτ2

m

+ (1− S
2
s )τ

1+ ω2
Nτ2

]
and

J ′H =
2

5

[
S2
s τm

1+ ω2
Hτ2

m

+ (1− S
2
s )τ

1+ ω2
Hτ2

] (23)
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Figure 5. (a) A Lipari–Szabo mapping approach to finding the fam-
ily of (S2

s , τ, S2
f ) values consistent with a given (JN, JH) point

P3. As described in the text, one can set the value ofτ to any-

thing in the rangeτ(min) ≤ τ ≤ τ(max) (P (min)
2 to P (max)

2 ) and still

find values ofS2
s andS2

f
that will give spectral densities consistent

with point P3 when substituted into Equation 2. The intersection

of the line passing throughP1 = (J
(rigid)
N (τm), J

(rigid)
H (τm)) and

P2 = (J
(rigid)
N (τ), J (rigid)

H (τ)) for any feasible value of t with the

line passing throughP (max)
2 and the origin (pointP4) can be used to

determine those values ofS2
s andS2

f . In this case,P1 corresponds to
τm = 4.88 ns, andP3 corresponds to the observedJN andJH values
for residue 41 of CspA (0.42 and 0.025 ns/rad, respectively). (b) A
curve showingJ0 asτ increases fromτ(min) to τ(max) (i.e., asP2

moves fromP (min)
2 to P (max)

2 ). (c) The corresponding values ofS2
s

andS2
f determined from pointP4. The dot-dashed lines in (b) and

(c) illustrate the determination of theS2
s , S2

f , and t values consistent
with the observed value ofJ0 for residue 41 of CspA (1.06 ns/rad).

lie on the line passing throughP3 and the origin, and
betweenP3 and the ‘rigid tumbling’ curve (i.e., be-
tween pointsP3 andP (max)

2 in Figure 5a), since for
any such (J ′N, J ′H) point (e.g., pointP4 in Figure 5a)
one can find a value ofS2

f (0≤ S2
f ≤ 1) that will bring

this point into coincidence with the observed point
P3. PointP4 can lie on the line segment betweenP3

andP (max)
2 only if the value ofτ lies in the interval

betweenτ(min) (corresponding toS2
f = 1 and repre-

sented graphically by pointP (min)
2 determined from

P3 andP1 = (J
(rigid)
N (τm), J

(rigid)
H (τm))) andτ(max)

(corresponding toS2
f = 0 and represented graphically

by pointP (max)
2 ), whereτ(max) is numerically equal to

theτ
(min)
m of Equation 15. Furthermore, since the ‘rigid

tumbling’ curve establishes an upper bound onJ ′N and
J ′H, this determines a lower bound onS2

f , given by

S2
f (min) = JN

J
(rigid)
N (τ(max))

= JH

J
(rigid)
H (τ(max))

. (24)

This lower bound corresponds to the single-
Lorentzian limit of S2

s = 0 in Equation 2, and
it depends only on the relative positions ofP3 and
P
(max)
2 and not on the values ofJ0 or τm. Moving
P3 closer to the origin increases the magnitude of the
‘upper bound’J ′N andJ ′H values relative to theJN and
JH values ofP3, and reduces the lower bound onS2

f ,
approaching a limiting value of zero asP3 approaches
the origin.

Thus, the set of all possible values ofS2
s , τ, and

S2
f consistent with a given point in the (JN, JH) plane

(pointP3 in Figure 5a) can be constructed by allowing
τ to vary from its minimum to its maximum value (i.e.,
from pointsP (min)

2 to P (max)
2 ) and finding the inter-

section of the line between (J (rigid)
N (τm), J

(rigid)
H (τm))

and (J (rigid)
N (τ), J (rigid)

H (τ)) and the line betweenP3

andP (max)
2 (e.g., pointP4). However, the value ofJ0

calculated from thoseS2
s , τ, andS2

f and Equation 2
is not constant, as can be seen in Figure 5b:J0 is
at its maximum value for the minimum value ofτ,
and decreases monotonically asτ increases andS2

f

decreases, reaching a minimum at the maximum value
of τ. This lower bound onJ0 given by

J
(min)
0 = 2

5S
2
f (min)τ(max), (25)

whereS2
f (min) is given by Equation 24. If the esti-

matedJ0 value is smaller thanJ (min)
0 for the observed

JN andJH values, then it can be concluded that the
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data are not consistent with the Lipari–Szabo spectral
density of the form of Equation 1 or Equation 2 for
any value ofτm (sinceS2

f (min) andτ(max) are both
independent ofτm).

If the estimatedJ0 value is larger thanJ (min)
0 but

smaller than theJ0 value that would be expected based
on Equation 1 and the observed (JN, JH) point (to
within experimental error), then it can be concluded
thatS2

f 6= 1 is required to fit the data. One can solve

for theS2
s , S2

f , andτ values consistent with a (J0, JN,
JH) point and a given value ofτm simply by finding
the value ofτ for which the curve of Figure 5b in-
tersects the observedJ0 value. Although we cannot
construct a non-iterative method for the determination
of t along the lines of Equation 18, it can be readily
estimated using a one-dimensional root-finding algo-
rithm (Press et al., 1992). Onceτ has been found,
S2
s can be determined from pointsP1, P2, andP4 in

analogy to Equation 20, andS2
f is the constant needed

to makeP4 coincident withP3 (Figures 5a and 5c).
Error estimation is more difficult in this case, since
changes inJN or JH will cause a shift in the curve of
J0 vs τ. However, since the dependence ofJ0 on τ

is smooth and monotonic, numerical estimation ofτ

will be very efficient and robust. The values ofS2
s and

S2
f can be found in closed form, and a simple Monte

Carlo procedure can be used to reliably estimate the
uncertainties in the motional parameters.

As an example of this in the context of real data,
consider the spectral density estimates for residue 41
of CspA. The Lipari–Szabo map for this residue (Fig-
ure 3e) indicates that the observedJ0 value is smaller
than what would be expected based on the observed
JN andJH, since the iso-J0 contours lie further away
from the pointP1 = (J

(rigid)
N (τm), J

(rigid)
H (τm)) than

the feasible (JN, JH) region. From the intersection
of the J0 vs τ curve of Figure 5b with the observed
valueJ0 = 1.06 ns/rad we find that the spectral den-
sities for residue 41 can be fit exactly by Equation 2
with τ = 1.03 ns, S2

s = 0.51, andS2
f = 0.89 at

the estimatedτm of 4.88 ns (givingτe = 1.31 ns).
This differs significantly from the MODELFREE es-
timates ofτe = 232 ps,S2

s = 0.69, andS2
f = 0.86.

Back-calculation of the relaxation rates using the exact
expressions (Fischer et al., 1998) using the MODEL-
FREE parameters and those estimated here shows that
the latter are a better fit: the MODELFREE parameters
giveR1 = 1.93 s−1, R2 = 4.80 s−1, and NOE= 0.21
(χ2 = 34.7), while the parameters estimated here give
R1 = 2.21 s−1, R2 = 4.57 s−1, and NOE= 0.27

(χ2 = 0.25). Clearly, the nonlinear fitting procedure
used previously did not succeed in finding the least-
squares fit. Although the parameters estimated here
do fit the spectral densities exactly, they do not fit the
relaxation data exactly (i.e.,χ2 = 0.25 > 0). This
is likely due to the quantitative failure of the reduced
spectral density mapping approximation, and is partic-
ularly apparent in the NOE datum, which is dominated
by J (ωH ± ωN) and therefore is most susceptible to
such a failure. However, the deviation between the
parameters estimated from Lipari–Szabo mapping and
the exact fit parameters determined by direct nonlinear
optimization (τ = 1.05 ns,S2

s = 0.51, andS2
f = 0.88)

is quite small, and is likely to be negligible com-
pared to the uncertainties arising from experimental
uncertainties in the relaxation rates.

Although the ‘model selection’ methods used in
software such as MODELFREE (Mandel et al., 1995)
make use of classical statistical hypothesis tests which
cannot compare models with equal numbers of pa-
rameters (Jin et al., 1998), in the particular case of
testing between models withRex 6= 0 and those with
S2
f 6= 1 this limitation is not a severe shortcoming. The

need for eitherRex 6= 0 or S2
f 6= 1 is determined by

whether the observedJ0 value is significantly larger
or smaller than what would be expected based on the
observedJN and JH values. It obviously cannot be
both, and as long asτm is known and remains constant
there can be no ambiguity between ‘model 4’ (S2, τ,
Rex, S2

f = 1) and ‘model 5’ (S2
s , τ, Rex = 0, S2

f ),

unless the data are already well fit by ‘model 2’ (S2,
τ, Rex = 0, S2

f = 1) (in the nomenclature of Mandel
et al., 1995). Of course, this does not logically pre-
clude the possibility thatRex 6= 0 and S2

f 6= 1, in
which case the parameter estimate is underdetermined
if only three relaxation data have been measured. We
consider this case in the following section.

Mapping of the (S2
s , τ, Rex, S2

f ) nullspace in an
underdetermined system

If we are willing to consider the possibility that a given
residue could have bothRex 6= 0 andS2

f 6= 1, then
the parameter estimate is obviously underdetermined
if only R1, R2, and NOE measurements at one field
strength have been made. Ideally, this situation should
be addressed by the collection of more data to un-
ambiguously determine the parameter values, as we
have advocated (Andrec et al., 1999). However, if the
collection of more data is impossible or impractical,
then it is still possible to determine bounds on the mo-



95

tional parameters even for an underdetermined system.
The extraction of useful information from underde-
termined models (also known as ‘ill-posed inverse
problems’) is certainly not without precedent in NMR
spectroscopy or the physical sciences in general. Such
models arise routinely in geophysics, for example,
where unique solutions are often obtained by im-
posing additional ‘regularization’ criteria (Tarantola,
1987). One common regularization method familiar to
NMR spectroscopists is the ‘maximum entropy’ cri-
terion, which has been used to select a unique high
digital resolution frequency-domain representation of
lower digital resolution time-domain data (Stephen-
son, 1988). However, for many ill-posed problems
there exist physical constraints which can significantly
limit the size of the possible solution space even in
the absence of any regularization criteria (for a recent
NMR-related example, see Losonczi and Prestegard,
1998). We demonstrate here that the Lipari–Szabo
model itself provides such constraints, and that these
constraints can be used to determine upper and/or
lower bounds on the motional parameters.

In our case, the (J0, JN, JH) values define a one-
dimensional curve (known as the ‘nullspace’) through
the (S2

s , τ, Rex, S2
f ) parameter space which fit the data

exactly (assumingJ0 ≥ J
(min)
0 and no experimental

uncertainty). For linear problems, the nullspace is a
linear subspace of the parameter space, and a set of or-
thonormal basis vectors for the nullspace can be easily
determined using singular value decomposition (Press
et al., 1992). For a nonlinear model (such as the one
considered here), the nullspace consists of a nonlin-
ear subspace of the parameter space, and in general
cannot be expressed in closed form. In our case, how-
ever, we can make use of the Lipari–Szabo mapping
procedure to numerically estimate and plot the curve
corresponding to the nullspace for any set of (J0, JN,
JH) data (withJ0 ≥ J

(min)
0 ). In fact, this curve is

simply a generalization of the curve already seen in
Figure 5b. Suppose that for residue 41 of CspA we
wish to consider the possibility that bothRex 6= 0
andS2

f 6= 1, and we again assume that the spectral
densities for residue 41 are given by (J0, JN, JH) =
(1.06, 0.42, 0.025) with no experimental uncertainty.
It is clear from the above arguments thatS2

f cannot
equal 1, but must be at most 0.89, since any larger
value would lead to a predictedJ0 which is larger than
that observed. On the other hand, values ofS2

f less
than 0.89 are now feasible, since they lead to predicted
J0 values which are smaller than those observed, and

the ‘excess’J0 can be attributed to anRex contribution.
However, we know that there is a lower bound on the
apparentJ0 that is independent of the observedJ0 and
corresponds to the limitS2

s = 0. This, in turn, implies
an upper bound onRex, given by

R
(max)
ex = 2

3b(J0− J (min)
0 ). (26)

In the case of CspA residue 41,R(max)
ex is equal to

1.66 s−1. As above, the effect of uncertainty on the
motional parameters is difficult to express analyti-
cally, but can easily be determined via simple Monte
Carlo and presented graphically as a ‘scatter plot’ of
nullspace curves, as shown in Figure 6. Thus, for the
general underdetermined fit ofS2

s , τ, Rex, andS2
f to

J0, JN, andJH, we can obtain nontrivial upper and
lower bounds onτ, a lower bound inS2

f (and a nontriv-

ial upper bound if the data cannot be fit withS2
f = 1),

an upper bound onRex (and a nontrivial lower bound
if the data cannot be fit withRex = 0), and an upper
bound onS2

s (the lower bound always beingS2
s = 0).

These limits can be seen in the ‘scatter plot’ of Fig-
ure 6 as the bounds enclosing the entire ‘bundle’ of
curves.

Discussion

The mapping of spectral density estimates and the
geometric relationship between those estimates and
the Lipari–Szabo parameters provides many useful in-
sights into both the information content of the spectral
density estimates as well as the Lipari–Szabo model.
In addition to providing approximate parameter es-
timates and ‘model selections’ as described above,
Lipari–Szabo mapping can also be used to detect cases
which might give rise to pathologies in the parame-
ter estimation or ambiguities in the ‘model selection’.
This is illustrated with two examples from the CspA
data set in Figure 7. In general, the closer the feasible
(JN, JH) region is to the pointP1 = (J

(rigid)
N (τm),

J
(rigid)
H (τm)), the larger will be the uncertainty inτe,

reaching the extreme case of infinite uncertainty ifP1
is inside the feasible (JN, JH) region. Figure 7a shows
the results for residue 36 of CspA, and it is immedi-
ately apparent that the pointP1 for τm = 4.88 does
in fact lie inside the (JN, JH) feasible region. As a
consequence, it is not possible to establish an upper
or lower bound onτe for this residue, and for large
values ofτe this will result in very large uncertain-
ties in S2 as discussed above. Feng et al. did in fact
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Figure 6. A ‘scatter plot’ of curves corresponding to the nonlinear
nullspace associated with the underdetermined fit ofS2

s , τ,Rex, and
S2
f

to J0, JN, andJH for the spectral densities and uncertainties
of residue 41 of CspA (usingτm = 4.88 ns). One hundred points
uniformly distributed in the feasible (J0, JN, JH) region estimated
using Equations 9–10 were generated, and the four-dimensional
curve corresponding to the (S2

s , τ,Rex, S2
f

) nullspace for each point

was determined. The projections of that family of curves onto theS2
s

vs τ, Rex vs τ, andS2
f vs τ planes are shown. Taken together, these

represent the ‘tube’ through (S2
s , τ,Rex, S2

f )-space that is consistent
with the spectral density estimates for residue 41 of CspA.

recognize the very large uncertainty inτe, and for
that reason did not report an error estimate for that
parameter (Table 1). However, this earlier estimate
of the uncertainty inS2 is likely too small, perhaps
because of inadequate exploration of the parameter
space by the Monte Carlo error estimation method.
The results for residue 42 (Figure 7b) illustrate another
potential difficulty that can arise in classical Lipari–
Szabo analyses. In this case, a part of the feasible (JN,
JH) region overlaps the region defined by the upper
and lower bound iso-J0 contours, while most of it lies
outside of that region. This implies that although the
data could be fit to within the estimated experimen-
tal errors withRex = 0 (which was the conclusion
of the MODELFREE analysis), this ‘model selection’
may be ambiguous, and caution should be exercised in

Figure 7. Lipari–Szabo maps for two residues of CspA for which
Lipari–Szabo parameter estimation and ‘model selection’ could lead
to pathologies (see Discussion). The lines, curves, and boxes have
the same meanings as in Figure 3 above.

the interpretation of ‘model selection’ results for this
residue. Alternatively, one could simply report an up-
per bound onRex, and not make an explicit choice as
to whetherRex is exactly equal to zero or not (Andrec
et al., 1999).

Many of the results above implicitly assume that
τm is known precisely. This is not normally the case,
asτm must usually be determined from the relaxation
data along with the internal motional parameters (Fis-
cher et al., 1998; Andrec et al., 1999) and will have an
associated uncertainty. Furthermore, most biological
macromolecules are not spherically symmetric, and
therefore their rotational diffusion cannot be described
by a single rotational correlation time. However, if the
deviation from spherical symmetry is not large and the
internal motions are sufficiently well behaved, then the
spectral density is well approximated by Equation 1 or
2 with an apparentτm that depends on the mean orien-
tation of the bond vector in the molecule (Schurr et al.,
1994; Brüschweiler et al., 1995; Andrec et al., 2000).
Given structural information and an estimate of the
approximate tensor parameters based on the relaxation
data (Schurr et al., 1994; Brüschweiler et al., 1995;
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Figure 8. A superposition of three Lipari–Szabo maps for the spectral density values of residue 41 for three different values ofτm demonstrating
the effect ofτm uncertainty on Lipari–Szabo parameter estimates and ‘model selection’ (see Discussion). It is clear that a change inτm of 0.5 ns
(due to statistical uncertainty or the effects of anisotropy) can change the ‘model selection’ quite dramatically.

Lee et al., 1997; Clore et al., 1998), one can generate
Lipari–Szabo maps where anisotropy information is
encoded in apparentτm values.

Several general trends are immediately apparent
from the geometry of the Lipari–Szabo map. First
of all, given an observed (JN, JH) point, a decrease
in τm will be correlated with an decrease in the es-
timated value ofτ, as has been observed previously
(Andrec et al., 1999). This correlation will be more
prominent the closer the observed (JN, JH) point is
to P1 = (J

(rigid)
N (τm), J

(rigid)
H (τm)). Furthermore,

changes inτm cause a shift in the iso-J0 contour for a
given value ofJ0. This can result in dramatic changes
in the ‘model selection’ as a function ofτm, as can be
seen in Figure 8. In this case, changes in the assumed
τm of less than 500 ps result in substantial changes
to the interpretation of the data: atτm = 4.0 ns, the
spectral densities are well fit by the simple Lipari–
Szabo model, while at 4.5 ns they clearly require the
‘extended’ model. This is due primarily to the shifting
of the iso-J0 contours relative to the feasible (JN, JH)
region as a function ofτm.

Proponents of the spectral density mapping ap-
proach to the analysis of NMR relaxation data have
argued that the method has the significant advantage

that it is model-independent and more general than the
Lipari–Szabo model. Lipari–Szabo mapping allows us
to state precisely when the results of spectral density
mapping are inconsistent with the simple or ‘extended’
Lipari–Szabo models (Equations 1 and 2 with or with-
out Rex = 0). Specifically, spectral densities can be
inconsistent with the Lipari–Szabo model either be-
cause (1)JN andJH cannot be fit using Equation 1 or
2 irrespective of the value ofJ0, or (2)J0 cannot be fit
simultaneously withJN andJH. Situation (1) can arise
in one of two ways. TheJN andJH values could lie
outside the region of the (JN, JH) plane enclosed by
the ‘rigid tumbling’ curve of Figure 1a, in which case
the spectral densities cannot be fit with the Lipari–
Szabo model for any value ofτm. We conjecture that
such spectral densities are also inconsistent with any
physically realistic model for internal motions. Alter-
natively, theJN and JH values might lie inside the
‘rigid tumbling’ curve but below the ‘τe = 0 line’
passing throughP1 = (J

(rigid)
N (τm), J

(rigid)
H (τm)) and

the origin for a given value ofτm, or, equivalently, that
τm < τ

(min)
m (Equation 15). In that case, the spectral

densities cannot be fit with the Lipari–Szabo model for
that value ofτm but could be fit with a largerτm such
that τm ≥ τ

(min)
m . Situation (2) can only arise ifJ0 is
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smaller than theJ (min)
0 calculated using Equation 25

for the estimated values ofJN andJH, since any other
value ofJ0 can be fit with an appropriate value ofRex
and/orS2

f . As discussed above, such spectral densities
are inconsistent with the Lipari–Szabo model of Equa-
tions 1 and 2 independent of anyτm estimate. Any
values ofJ0, JN, andJH that do not fall into these three
categories can be fit with the Lipari–Szabo model. Ob-
viously, it is possible that relaxation data whichcan
be fit by the Lipari–Szabo model could result in re-
duced spectral density estimates which cannot be fit
by the Lipari–Szabo model due to the approximations
inherent in reduced spectral density mapping.

Conclusions

We have shown that there exists a simple graphical re-
lationship between reduced spectral density estimates
and the parameters of the Lipari–Szabo model, and
that one can easily obtain estimates of Lipari–Szabo
parameters directly from the spectral density esti-
mates. Furthermore, we have shown that the procedure
of ‘model selection’ as it is currently used in Lipari–
Szabo analysis can be related to the degree of internal
consistency of the observedJ0, JN, andJH spectral
densities, and that this degree of consistency can be
visualized graphically. The relationship between the
Lipari–Szabo model and spectral density estimates has
been explored in the past (Lefèvre et al., 1996), and
a method for ‘model selection’ based on a qualitative
comparison of the relative magnitudes ofJ0 andJH
has been proposed earlier (Ishima et al., 1995). This
work puts that qualitative relationship on a firm quanti-
tative footing. It also shows under what circumstances
the spectral density estimates are inconsistent with the
Lipari–Szabo model.

It has been suggested that the use of spectral den-
sity estimates for the study of internal motions in
macromolecules is preferable to methods based on the
Lipari–Szabo formalism because spectral density esti-
mates are model-independent and are in some sense
more general (Peng and Wagner, 1992a). While it
is true that spectral densities are model-independent,
their interpretation in terms of an intuitive physical
description of the internal motions cannot be done
in the absence of a model. In particular, spectral
densities contain information not only about internal
motions, but also about the overall tumbling of the
molecule. The Lipari–Szabo formalism provides the
simplest and most general method that can be used

to separate those degrees of freedom assuming that
they are in principle separable, and the Lipari–Szabo
mapping procedure described here can be used to in-
terpret spectral density estimates within the context of
the Lipari–Szabo formalism with minimal investment
in software and computing time.

Lipari–Szabo mapping requires minimal comput-
ing time, and can be used as an initial ‘screening’
or ‘pre-processing’ step prior to a more rigorous and
computationally intensive analysis. In particular, it can
be used to detect the presence of significant multiple
minima in χ2, as well as identify possible ‘model
selection’ ambiguities. Given an estimate of a feasi-
ble range forτm (possibly making use of information
from a rough estimate of the diffusion tensor para-
meters), it can be used to identify residues for which
‘model selection’ will be strongly influenced byτm.
Furthermore, the nonlinear optimization methods used
in software packages such as MODELFREE (Man-
del et al., 1995) are easily trapped by local minima
or strong nonlinearities, necessitating extensive grid
searching to ensure that the algorithm finds a true
global optimum. The methods described here could be
used as a supplement or alternative to grid searching
for more efficient location of good starting points for
nonlinear optimization.

Appendix

We can make use of the linear relationship between
R1 andRx (Fushman et al., 1994) to construct a poly-
nomial inτ analogous to Equation 18 above which is
immune to any inaccuracies arising from the reduced
spectral density mapping approximation. We begin by
noting (in analogy to Equation 16) that

cR
(rigid)
1 (τ)+ d = R(rigid)

x (τ), (A1)

whereR(rigid)
1 (τ) andR(rigid)

1 (τ) are the relaxation rates
corresponding to a single Lorentzian with correlation
timeτ, and the constantsc andd are given by

c = R
(rigid)
x (τm)− R(obs)

x

R
rigid
1 (τm)− Robs)

1

,

and

d = R(rigid)
x (τm)− cR(rigid)

1 (τm).

Expanding and collecting terms, we find that

τ6+ Aτ5+ Bτ4+ Cτ3+Dτ2 + Eτ+ F = 0, (A2)
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where

A = 2

5d

[
bc

ω2
N

+ a(c+ 1)

(ωH − ωN)2
+ 6a(c− 1)

(ωH + ωN)2

]
,

B = ω−2
N + (ωH − ωN)

−2 + (ωH + ωN)
−2,

C = 2

5d

[
a(c+ 1)+ bc
ω2

N(ωH − ωN)2
+ 6a(c− 1)+ bc

ω2
N(ωH + ωN)2

+ a(7c− 5)

(ωH − ωN)2(ωH + ωN)2

]
,

D = ω−2
N (ωH − ωN)

−2+ ω−2
N (ωH + ωN)

−2

+(ωH − ωN)
−2(ωH + ωN)

−2,

E = 2

5d

a(7c− 5)+ bc
ω2

N(ωH − ωN)2(ωH + ωN)2
,

and

F = ω−2
N (ωH − ωN)

−2(ωH + ωN)
−2.

The constantsa and b are defined in Equation 8.
Clearly, this sixth degree equation cannot be solved in
a noniterative fashion. However, if one is concerned
about inaccuracies due to the reduced spectral den-
sity approximation, one can determine an approximate
value ofτ using Equation 18, which can be used as
a starting value for the numerical solution of Equa-
tion A2 using standard iterative root-finding methods
(Press et al., 1992). Since the solution obtained from
Equation 18 is likely to be very close to a root of Equa-
tion A2, this strategy may be more generally robust
than direct nonlinear optimization ofS2 andτe.
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